山西省运城市夏县2024年九年级数学第一学期开学联考试题【含答案】
展开
这是一份山西省运城市夏县2024年九年级数学第一学期开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AC=5,BC=6,则线段EF的长为( )
A.5B.C.6D.7
2、(4分)实数的绝对值是( )
A.B.C.D.1
3、(4分)一组数据3、2、1、2、2的众数,中位数,方差分别是( )
A.2,1,0.4B.2,2,0.4
C.3,1,2D.2,1,0.2
4、(4分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )
A.8cmB.6cmC.4cmD.2cm
5、(4分)如图,中,是边的中点,平分于已知则的长为( )
A.B.
C.D.
6、(4分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为( )
A.10%B.15%C.20%D.25%
7、(4分)不等式组有3个整数解,则的取值范围是( )
A.B.C.D.
8、(4分)下列说法正确的是( )
A.了解某型导弹杀伤力的情况应使用全面调查
B.一组数据3、6、6、7、9的众数是6
C.从2000名学生中选200名学生进行抽样调查,样本容量为2000
D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则乙的成绩更稳定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若实数x,y满足+,则xy的值是______.
10、(4分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.
11、(4分)如图,在平行四边形中,,的平分线交于点,连接,若,则平行四边形的面积为__________.
12、(4分)有一组数据如下: 2, 2, 0,1, 1.那么这组数据的平均数为__________,方差为__________.
13、(4分)直线与轴的交点坐标___________
三、解答题(本大题共5个小题,共48分)
14、(12分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。
(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。
(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。
15、(8分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.
(1)问服装厂有哪几种生产方案?
(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?
(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.
16、(8分)(1)计算:
(2)解方程:-1=
17、(10分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
18、(10分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.
20、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC; ②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).
21、(4分)计算__________.
22、(4分)如图①,如果 A1、A2、A3、A4 把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形4个;如图②,如果A1、A2、A3、A4、A5、A6 把圆周六等分,则以A1、A2、A3、A4、A5、A6 为点的直角三角形有 12 个;如果 A1、A2、A3、……A2n 把圆周 2n 等分,则以 A1、A2、A3、…A2n为顶点的直角三角形有__________个,
23、(4分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,将边长为 4 的正方形 ABCD 沿其对角线 AC 剪开,再把△ABC沿着 AD 方向平移,得到 △ABC .
(1)当两个三角形重叠部分的面积为 3 时,求移动的距离 AA ;
(2)当移动的距离 AA 是何值时,重叠部分是菱形.
25、(10分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.
26、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
(1)画出关于轴对称的;
(2)画出将绕原点逆时针旋转90°所得的;
(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
只要证明OF=OC,再利用三角形的中位线定理求出EO即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC=,
∵AE=EB,
∴EF∥BC,OE=BC=3,
∴∠F=∠FCG,
∵∠FCG=∠FCO,
∴∠F=∠FCO,
∴OF=OC=,
∴EF=EO+OF=,
故选B.
本题考查平行四边形的性质、三角形的中位线定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
2、B
【解析】
解:|
故选B
3、B
【解析】
试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
故选B.
4、C
【解析】
试题分析:解:∵四边形ABCD是平行四边形,
∴BC=AD=12cm,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=8cm,
∴CE=BC﹣BE=4cm;
故答案为C.
考点:平行四边形的性质.
5、A
【解析】
延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.
【详解】
解:延长交于点.
,平分,
为等腰三角形.
,E为的中点
又为的中点
为的中位线,
故选:A.
本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
6、C
【解析】
根据商品的原来的价格(1-每次降价的百分数)2=现在的价格,设出未知数,列方程求解即可.
【详解】
解:设这种商品平均每次降价的百分率为x
根据题意列方程得:
解得(舍)
故选C.
本题主要考查一元二次方程的应用,关键在于根据题意列方程.
7、B
【解析】
分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.
详解:不等式组,由﹣x<﹣1,解得:x>4,
由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,
故不等式组的解为:4<x≤2﹣a,
由关于x的不等式组有3个整数解,
得:7≤2﹣a<8,解得:﹣6<a≤﹣1.
故选B.
点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.
8、B
【解析】
直接利用方差的意义以及全面调查与抽样调查、众数的定义分别分析得出答案.
【详解】
解:A、了解某型导弹杀伤力的情况应使用抽样调查,故此选项错误;
B、一组数据3、6、6、7、9的众数是6,正确;
C、从2000名学生中选200名学生进行抽样调查,样本容量为200,故此选项错误;
D、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则甲的成绩更稳定,故此选项错误;
故选B.
此题主要考查了方差的意义以及全面调查与抽样调查、众数的定义,正确把握相关定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.
【详解】
因为,
所以=0, ,
解得:=-2, =,
所以=(-2)×=-2.
故答案为-2.
本题考查非负数的性质-算术平方根,非负数的性质-偶次方.
10、.
【解析】
试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).
∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.
考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.
11、
【解析】
根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.
【详解】
过点作于点,如图所示.
∵是的平分线,
∴.
∵四边形是平行四边形,
∴,
∴,
∴,
∴,
∴.
∵,
∴,
∴BC=BE,
∴,
∴.
∴平行四边形的面积为.
故答案为:.
此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.
12、1 1
【解析】
分析:先算出数据的平均数,再根据方差的计算公式,代入公式计算即可得到结果.
详解:平均数为:(-2+2+0+1+1)÷5=1,
=,
故答案为1, 1.
点睛:本题考查了平均数与方差的应用,先求出这组数据的平均数,再根据方差公式进行计算即可.
13、(0,-3)
【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.
【详解】
解:由题意得:当x=0时,y=2×0-3=-3,
即直线与y轴交点坐标为(0,-3),
故答案为(0,-3).
本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.
三、解答题(本大题共5个小题,共48分)
14、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)
【解析】
(1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;
(2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3 , 由图读出D1、D2、D3坐标即可.
【详解】
(1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)
(2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)
此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.
15、(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套
【解析】试题分析:
(1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列不等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;
(2)根据每种型号的利润和数量都已说明,需求出总利润,根据一次函数的性质即可得 到利润最小值;
(3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、1,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的方案.
试题解析:
(1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,
解得16≤x≤1,
∵x是正整数,
∴x=16或17或1.
有以下生产三种方案:
生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;
(2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,
∵y随x的增大而减小,
∴x=1时,y最小值=266,
∴至少可获得利润266元
(3)解:服装厂采用的方案是:生产甲型服装16套,乙型服装24套.
16、(1)3+2;(2)原方程无解
【解析】
(1)利用乘法公式展开,然后合并即可;
(2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.
【详解】
解:(1)原式=5+5-3-2
=3+2;
(2)去分母得(x-2)2-(x+2)(x-2)=16,
解得x=-2,
检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,
所以原方程无解.
本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.
17、1
【解析】
试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
考点:相似三角形的应用.
18、7200元
【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.
【详解】
连接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC=⋅AD⋅AB+DB⋅BC=×4×3+×12×5=36.
所以需费用36×200=7200(元).
此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)
∴使图中黑色部分的图形构成一个轴对称图形的概率是.
20、①②③.
【解析】
①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;
【详解】
①∵四边形ABCD是正方形,
∴∠BAD=∠ADC=∠B=90°,
∴∠BAM+∠DAM=90°,
∵将△ABM绕点A旋转至△ADN,
∴∠NAD=∠BAM,∠AND=∠AMB,
∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,
∴∠DAM=∠AND,故①正确,
②∵将△MEF绕点F旋转至△NGF,
∴GN=ME,
∵AB=a,ME=a,
∴AB=ME=NG,
在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,
∴△ABM≌△NGF;故②正确;
③∵将△ABM绕点A旋转至△ADN,
∴AM=AN,
∵将△MEF绕点F旋转至△NGF,
∴NF=MF,
∵△ABM≌△NGF,
∴AM=NF,
∴四边形AMFN是矩形,
∵∠BAM=∠NAD,
∴∠BAM+DAM=∠NAD+∠DAN=90°,
∴∠NAM=90°,
∴四边形AMFN是正方形,
∵在Rt△ABM中,a1+b1=AM1,
∴S四边形AMFN=AM1=a1+b1;故③正确
故答案为①②③.
本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.
21、
【解析】
将化成最简二次根式,再合并同类二次根式.
【详解】
解:
故答案为:
本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.
22、2n(n-1)
【解析】
根据圆周角定理找到直径所对的圆周角是直角,然后由一条直径所对的直角数来寻找规律.
【详解】
解:由圆周角定理知,直径所对的圆周角是直角.
∴当A1、A2、A3、A4把圆周四等分时,该圆中的直径有A1A3,A2A4两条,
∴①当以A1A3为直径时,有两个直角三角形;
②当以A2A4为直径时,有两个直角三角形;
∴如果A1、A2、A3、A4把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形有(4÷2)×(4-2)=4个;
当A1、A2、A3、A4、A5、A6把圆周六等分,则以A1、A2、A3、A4、A5、A6为顶点的直角三角形有(6÷2)×(6-2)=12个;
当A1、A2、A3、…A2n把圆周2n等分,则以A1、A2、A3、…A2n为顶点的直角三角形有(2n÷2)×(2n-2)=2n(n-1)个.
故答案是:2n(n-1).
本题考查圆周角定理:直径所对的圆周角是直角.解答该题是关键是根据直径的条数、顶点的个数来寻找规律.
23、1
【解析】
试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,
∴a2-1a+m=0①,a2-1a-m=0②,
①+②,得2(a2-1a)=0,
∵a>0,
∴a=1.
考点:一元二次方程的解.
二、解答题(本大题共3个小题,共30分)
24、(1)AA =1或3;(2)AA =时,重叠部分是菱形.
【解析】
(1)根据平移的性质,结合阴影部分是平行四边形,设AA′=x,AC与A′B′相交于点E,则A′D=4-x,△AA′E是等腰直角三角形,根据平行四边形的面积公式即可列出方程求解;
(2)设AC与CD交于点F,当四边形A′ECF是菱形时,有A′E=A′F,设AA′=x,则A′E=x,A′D=4-x,再由A′F=A′D,可得方程,解之即得结果.
【详解】
(1)设AA′=x,AC与A′B′相交于点E,如图,
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=45°,
∴△AA′E是等腰直角三角形,
∴A′E=AA′=x,A′D=AD-AA′=4-x,
∵阴影部分面积为3,
∴x(4-x)=3,
整理得,x2-4x+3=0,
解得x1=1,x2=3,
即移动的距离AA′=1或3.
(2)设AC与CD交于点F,当四边形A′ECF是菱形时,A′E=A′F,
设AA′=x,则A′E=CF=x,A′D=DF=4-x,
∵△A′DF是等腰直角三角形,
∴A′F=A′D,
即,
解得,
即当移动的距离为时,重叠部分是菱形.
本题考查了平移的性质、等腰直角三角形的性质和判定、正方形和菱形的性质及一元二次方程的解法等知识,解决本题的关键是抓住平移后图形的特点,利用方程思想解题.
25、1
【解析】
根据平行四边形的周长求出BC+CD=20,再根据平行四边形的面积求出BC=CD,然后求出CD的值,再根据平行四边形的面积公式计算即可得解.
【详解】
∵▱ABCD的周长=2(BC+CD)=40,
∴BC+CD=20①,
∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
∴S▱ABCD=4BC=6CD,
整理得,BC=CD②,
联立①②解得,CD=8,
∴▱ABCD的面积=AF•CD=6CD=6×8=1.
本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.
26、(1)见解析;(2)见解析;(3)能,图见解析;
【解析】
(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
【详解】
(1)如图所示:
(2)如图所示:
(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西省运城市芮城县数学九年级第一学期开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省运城市夏县2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法等内容,欢迎下载使用。