山东省微山县联考2025届数学九年级第一学期开学调研模拟试题【含答案】
展开
这是一份山东省微山县联考2025届数学九年级第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1>y2,则k取值范围是
( )
A.k≥2B.k>2C.k≤2D.k<2
2、(4分)下列四组线段中,可以构成直角三角形的是( )
A.1、、B.2、3、4C.1、2、3D.4、5、6
3、(4分)点P(-2,3)关于y轴的对称点的坐标是( )
A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)
4、(4分)在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是( )
A.B.C.D.
5、(4分)正方形具有而菱形不一定具有的性质是( )
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等
6、(4分)如图,在△ABC中,点D、E分别是AB、AC的中点,下列结论不正确的是( )
A.DE∥BCB.BC=2DEC.DE=2BCD.∠ADE=∠B
7、(4分)等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是( )
①OD=OE;②;③;④△BDE的周长最小值为9.
A.1个B.2个C.3个D.4个
8、(4分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知AD=16,BD=24,AC=12,则△OBC周长为( )
A.26B.34C.40D.52
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数均是8.5环,方差分别是:,,则射击成绩较稳定的是______(填“甲”或“乙”).
10、(4分)计算: =_____.
11、(4分)定义运算“*”为:a*b,若3*m=-,则m=______.
12、(4分)如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________.
13、(4分)若为三角形三边,化简___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的方程﹣=m的解为非负数,求m的取值范围.
15、(8分)已知四边形,,与互补,以点为顶点作一个角,角的两边分别交线段,于点,,且,连接,试探究:线段,,之间的数量关系.
(1)如图(1),当时,,,之间的数量关系为___________.
(2)在图(2)的条件下(即不存在),线段,,之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
(3)如图(3),在腰长为的等腰直角三角形中,,,均在边上,且,若,求的长.
16、(8分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.
(1)求证:四边形AECF是平行四边形;
(2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.
17、(10分)已知关于x的一元二次方程.
(1)当m为何值时,方程有两个不相等的实数根;
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
18、(10分)阅读理解:
定义:有三个内角相等的四边形叫“和谐四边形”.
(1)在“和谐四边形”中,若,则 ;
(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.
求证:四边形是“和谐四边形”.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在等腰梯形中,∥ ,,⊥,则∠=________.
20、(4分)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=,CD=5,那么∠D的度数是_____.
21、(4分)在一个扇形统计图中,表示种植苹果树面积的扇形的圆心角为,那么苹果树面积占总种植面积的___.
22、(4分)如图,正方形的边长为12,点、分别在、上,若,且,则______.
23、(4分)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在直角坐标系中,反比例函数y=(x>0),过点A(3,4).
(1)求y关于x的函数表达式.
(2)求当y≥2时,自变量x的取值范围.
(3)在x轴上有一点P(1,0),在反比例函数图象上有一个动点Q,以PQ为一边作一个正方形PQRS,当正方形PQRS有两个顶点在坐标轴上时,画出状态图并求出相应S点坐标.
25、(10分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.
(1)求的值及的面积;
(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;
(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标.
26、(12分)如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=1.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求平行四边形ABCD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分析:根据反比例函数的性质,可得答案.
详解:由x1<0<x1,y1>y1,得:
图象位于二四象限,1﹣k<0,解得:k<1.
故选B.
点睛:本题考查了反比例函数的性质,利用反比例函数的性质是解题的关键.
2、A
【解析】
求出两小边的平方和、最长边的平方,看看是否相等即可.
【详解】
A、12+()2=()2
∴以1、、为边组成的三角形是直角三角形,故本选项正确;
B、22+3242
∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;
C、 12+2232
∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;
D、 42+5262
∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;
故选A..
本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.
3、A
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
点P(−2,3)关于y轴的对称点的坐标为(2,3).
故选:A.
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
4、B
【解析】
根据题意,直接运用三角函数的定义求解.
【详解】
解:∵∠C=90°,AB=13,AC=12,
∴sinB=.
故选:B.
本题主要考查的是锐角三角函数的定义,解答此类题目的关键是画出图形便可直观解答.
5、B
【解析】
根据正方形的性质以及菱形的性质逐项进行分析即可得答案.
【详解】
菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;
正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),
A.菱形和正方形的对角线都互相垂直,故本选项错误;
B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;
C.菱形和正方形的对角线互相平分,故本选项错误;
D.菱形和正方形的对角都相等,故本选项错误,
故选B.
本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.
6、C
【解析】
根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出结论.
【详解】
解:∵在△ABC中,点D、E分别是边AB、AC的中点,
∴DE//BC,DE=BC,
∴BC=2DE,∠ADE=∠B,
故选C.
本题考查了三角形的中位线定理,根据三角形的中位线的定义得出DE是△ABC的中位线是解答此题的关键.
7、B
【解析】
连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠0CB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用 得到四边形ODBE的面积 ,则可对进行③判断;作OH⊥DE,如图,则DH=EH,计算出=,利用面积随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
【详解】
解:连接OB、OC,如图,
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵点0是△ABC的中心,
∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
∴∠ABO=∠0BC=∠OCB=30°
∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE,
在△BOD和△COE中
∴△BOD2≌△COE,
∴BD=CE,OD=OE,所以①正确;
∴,
∴四边形ODBE的面积 ,所以③错误;
作OH⊥DE,如图,则DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°,
即S△ODE随OE的变化而变化,
而四边形ODBE的面积为定值,
所以②错误;
∵BD=CE,
∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=6+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,
.△BDE周长的最小值=6+3=9,所以④正确.
故选:B.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.
8、B
【解析】
由平行四边形的性质得出OA=OC=6,OB=OD=12,BC=AD=16,即可求出△OBC的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC=6,OB=OD=12,BC=AD=16,
∴△OBC的周长=OB+OC+AD=6+12+16=1.
故选:B.
点睛:本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、甲
【解析】
根据方差的性质即可求解.
【详解】
∵<,∴成绩较稳定的是甲
此题主要考查利用方差判断稳定性,解题的关键是熟知方差的性质.
10、
【解析】
=
11、—2
【解析】
试题分析:根据定义运算“*”:a*b,即可得方程,在解方程即可得到结果.
解:由题意得,解得.
考点:新定义运算
点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
12、
【解析】
分析:首先设出菱形边长为a,由AB=a,得出C、D的坐标,过点C作CE⊥AB,由勾股定理可得D点坐标.
详解:设菱形边长为a,即AB=a, 设C点坐标为(b,), ∵BC∥x轴,∴D点纵坐标为:,∴D点横坐标为:,则x= -4b, ∴D(-4b, ), ∵CD=a, ∴4b+b=a, a=5b,
过点C作CE⊥AB,则BE=a-AE=a-b=4b,BC=a=5b,
由勾股定理:CE=3b,CE= ,
∴b²=1-=, b=,∴D.故答案为.
点睛:本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,解题的关键是设出菱形边长,利用反比例函数的性质表示出菱形各顶点的坐标,进而求解.
13、4
【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.
【详解】
∵2,m,4是三角形三边,
∴2
相关试卷
这是一份山东省青岛市局属四校联考2024-2025学年九年级数学第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省济宁微山县联考2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省前郭县联考2024年九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。