山东省滨州市集团学校2025届数学九上开学联考试题【含答案】
展开
这是一份山东省滨州市集团学校2025届数学九上开学联考试题【含答案】,共21页。试卷主要包含了选择题,四象限,则k能取的最大整数为,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,O是对角线AC的中点,OE⊥AC,交AD于点E,连接CE.若AB=2,BC=4,则CE的长为( )
A.2.5B.2.8C.3D.3.5
2、(4分)如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是( )
A.B.C.D.
3、(4分)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
A.B.
C.D.
4、(4分)若反比例函数y的图象位于第二、四象限,则k能取的最大整数为( )
A.0B.-1C.-2D.-3
5、(4分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)生物刘老师对本班50名学生的血型进行了统计,列出如下统计表,则本班O型血的有( )
A.17人B.15人C.13人D.5人
7、(4分)一个多边形的内角和是7200,则这个多边形的边数是( )
A.2B.4C.6D.8
8、(4分)下列函数中,是的正比例函数的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若 是整数,则整数x的值是_____.
10、(4分)如图,已知中,边上的高,则的面积是______,边上的高的长是______.
11、(4分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.
12、(4分)最简二次根式与是同类二次根式,则=______.
13、(4分)已知5+的整数部分为a,5-的小数部分为b,则a+b的值为__________
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y是x的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式.
15、(8分)如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.
16、(8分)2019年3月25日是全国中小学生安全教育日,某中学为加强学生的安全意识,组织了全校800名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.
(1)这次抽取了 名学生的竞赛成绩进行统计,其中:m= ,n=
(2)补全频数分布直方图.
(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?
17、(10分)某景点的门票零售价为80元/张,“五一”黄金周期间,甲乙两家旅行社推出优惠活动,甲旅行社一律九折优惠;乙旅行社对10人以内(含10人)不优惠,超过10人超出部分八折优惠,某班部分同学去该景点旅游.设参加旅游人数为x人,购买门票需要y元.
(1)分别直接写出两家旅行社y与x的函数关系式,并写出对应自变量x的取值范围;
(2)请根据该班旅游人数设计最省钱的购票方案.
18、(10分)把下列各式因式分解.
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.
20、(4分)若关于的方程的一个根是,则方程的另一个根是________.
21、(4分)把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.
22、(4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.
23、(4分)已知,如图△ABC∽△AED,AD=5cm,EC=3cm,AC=13cm,则AB=_____cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:(1) (2)解方程x2-4x+1=0
25、(10分)如图,在平面直角坐标系中,点A(1,4),点B(3,2),连接OA,OB.
(1)求直线OB与AB的解析式;
(2)求△AOB的面积.
(3)下面两道小题,任选一道作答.作答时,请注明题号,若多做,则按首做题计入总分.
①在y轴上是否存在一点P,使△PAB周长最小.若存在,请直接写出点P坐标;若不存在,请说明理由.
②在平面内是否存在一点C,使以A,O,C,B为顶点的四边形是平行四边形.若存在,请直接写出点C坐标;若不存在,请说明理由.
26、(12分)如图,在中,,点、分别是、边上的中点,过点作,交的延长线于点.
(1)求证:四边形是平行四边形;
(2)若,,求四边形的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用线段的垂直平分线的性质,得到与的关系,再由勾股定理计算出的长即可.
【详解】
解:四边形是矩形,
,,,
,
,
设,则,
在中,根据勾股定理可得,
即,
解得,
故选:.
本题考查了利用线段的垂直平分线的性质、矩形的性质及勾股定理综合解答问题的能力,在解上面关于的方程时有时出现错误,而误选其它选项.
2、B
【解析】
函数y=ax+b和y=kx的图象交于点P(−4,−2),
即x=−4,y=−2同时满足两个一次函数的解析式。
所以关于x,y的方程组的解是: x= - 4 , y= - 2.
故选B.
点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
3、A
【解析】
若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
解:设走路线一时的平均速度为x千米/小时,
故选A.
4、B
【解析】
由图像位于第二、四象限得2k+10,求得k的取值范围即可得到答案.
【详解】
∵反比例函数y图象位于第二、四象限,
∴2k+10,
∴,
∴k的最大整数解为-1,
故选:B.
此题考查反比例函数的性质,由函数图像所在的象限确定比例系数的取值范围.
5、C
【解析】
试题解析:由一次函数y=kx+b的图象经过第一、三、四象限,
∴k>0,b
相关试卷
这是一份安徽省宿州市埇桥集团学校2025届九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省费县九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省海阳市美宝学校九上数学开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。