青海省西宁市第二十一中学2024年九上数学开学质量检测模拟试题【含答案】
展开
这是一份青海省西宁市第二十一中学2024年九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则下列不等式成立的是( )
A.B.C.D.
2、(4分)如果5x=6y,那么下列结论正确的是( )
A.B.C.D.
3、(4分)下列各式中,是最简二次根式的是( )
A.B.C.D.
4、(4分)使式子有意义的x的值是( )
A.x≥1B.x≤1C.x≥﹣1D.x≤2
5、(4分)如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是
A.5B.10C.8D.12
6、(4分)如图,∠BAC=90°,四边形ADEB、BFGC、CHIA均为正方形,若 S四边形ADEB=6,S四边形BFGC=18,四边形CHIA的周长为( )
A.4B.8C.12D.8
7、(4分)不等式的解集在数轴上表示为( )
A.B.C.D.
8、(4分)对于函数y=﹣2x+1,下列结论正确的是( )
A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限
C.当时,y>0D.y值随x值的增大而增大
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)因式分解:2a2﹣8= .
10、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
11、(4分)最简二次根式与是同类二次根式,则a的取值为__________.
12、(4分)已知,则 ___________ .
13、(4分)已知一次函数y=-x+1与y=kx+b的图象在同一直角坐标系中的位置如图(直线l1和l2),它们的交点为P,那么关于x的不等式-x+1>kx+b的解集为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在中,,,点,分别在边AC,BC上,,连接BD,点F,P,G分别为AB,BD,DE的中点.
(1)如图1中,线段PF与PG的数量关系是 ,位置关系是 ;
(2)若把△ CDE绕点C逆时针方向旋转到图2的位置,连接AD,BE,GF,判断△ FGP的形状,并说明理由;
(3)若把△ CDE绕点C在平面内自由旋转,AC=8,CD=3,请求出△FGP面积的最大值.
15、(8分)如图,在中,,CD平分,,,E,F是垂足,那么四边形CEDF是正方形吗?说出理由.
16、(8分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.
(1)这次调查获取的样本容量是 .(直接写出结果)
(2)这次调查获取的样本数据的众数是 ,中位数是 .(直接写出结果)
(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
17、(10分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
求证:,.
18、(10分)有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球,
(1)用树形图或列表法展现可能出现的所有结果;
(2)求摸到一个红球和一个白球的概率.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.
20、(4分)如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为___________.
21、(4分)将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.
22、(4分)甲、乙两名同学的5次射击训练成绩(单位:环)如下表.
比较甲、乙这5次射击成绩的方差S甲1,S乙1,结果为:S甲1_____S乙1.(选填“>”“=”或“<“)
23、(4分)把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某学校准备利用今年暑假将旧教学楼进行装修,并要在规定的时间内完成以保证秋季按时开学.现有甲、乙两个工程队,若甲工程队单独做正好可按期完成, 但费用较高;若乙工程队单独做则要延期 4 天才能完成,但费用较低.学校经过预 算,发现先由两队合作 3 天,再由乙队独做,正好可按期完成,且费用也比较合理. 请你算一算,规定完成的时间是多少天?
25、(10分)两个含有二次根式的代数式相乘,积不含有二次根式,称这两个代数式互为有理化因式,例如: 与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如: ;;…….
请仿照上述过程,化去下列各式分母中的根号.
(1)
(2) (n为正整数).
26、(12分)某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克3.5元,小王携带现金7000元到这市场购苹果,并以批发价买进.如果购买的苹果为x千克,小王付款后的剩余现金为y元
(1)写出y关于x的函数关系式,并写出自变量x的取值范围;
(2)若小王购买800千克苹果,则小王付款后剩余的现金为多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据不等式的性质逐个判断即可.
【详解】
解:A、∵x>y,
∴2x>2y,故本选项不符合题意;
B、∵x>y,
∴x−6>y−6,故本选项不符合题意;
C、∵x>y,
∴x+5>y+5,故本选项符合题意;
D、∵x>y,
∴−3x<−3y,故本选项不符合题意;
故选:C.
本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.
2、A
【解析】
试题解析:A, 可以得出:
故选A.
3、B
【解析】
根据最简二次根式的定义即可求解.
【详解】
A. ,分母出现根号,故不是最简二次根式;
B. 为最简二次根式;
C. =2,故不是最简二次根式;
D. ,根号内含有小数,故不是最简二次根式,
故选B.
此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.
4、A
【解析】
根式有意义则根号里面大于等于0,由此可得出答案.
【详解】
解:由题意得:x﹣1≥0,
∴x≥1.
故选A.
本题考查二次根式有意义的条件,比较简单,注意根号里面的式子为非负数.
5、C
【解析】
连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.
【详解】
如图连接AC,
,,
,
菱形ABCD的周长,
故选C.
本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.
6、B
【解析】
外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.
【详解】
解:根据勾股定理我们可以得出:
AB2+AC2=BC2
S正方形ADEB= AB2=6,S正方形BFGC= BC2=18,
S正方形CHIA= AC2=18-6=12,
∴AC=,
∴四边形CHIA的周长为==8
故选:B.
本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.
7、A
【解析】
先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.
【详解】
解不等式得:x⩽3,
所以在数轴上表示为
故选A.
本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.
8、A
【解析】
根据一次函数图象上点的坐标特征和一次函数的性质依次判断,可得解.
【详解】
解:当x=﹣1时,y=3,故A选项正确,
∵函数y=-2x+1图象经过第一、二、四象限,y随x的增大而减小,
∴B、D选项错误,
∵y>0,
∴﹣2x+1>0
∴x< ,
∴C选项错误.
故选:A.
本题考查一次函数图象上点的坐标特征,一次函数的性质,熟练掌握一次函数的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2(a+2)(a-2).
【解析】
2a2-8=2(a2-4)=2(a+2)(a-2).
故答案为2(a+2)(a-2)
考点:因式分解.
10、十
【解析】
根据正多边形的外角和为360°,除以每个外角的度数即可知.
【详解】
解:∵正多边形的外角和为360°,
∴正多边形的边数为,
故答案为:十.
本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
11、
【解析】
分析:根据最简二次根式及同类二次根式的定义,令被开方数相等解方程.
详解:根据题意得,3a+1=2
解得,a=
故答案为.
点睛:此题主要考查了最简二次根式及同类二次根式的定义,正确理解同类二次根式的定义是解题的关键.
12、
【解析】
将二次根式化简代值即可.
【详解】
解:
所以原式.
故答案为:
本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.
13、x<-1
【解析】
根据函数图像作答即可.
【详解】
∵-x+1>kx+b
∴l1的图像应在 l2上方
∴根据图像得:x<-1.
故答案为:x<-1.
本题考查的知识点是函数的图像,解题关键是根据图像作答.
三、解答题(本大题共5个小题,共48分)
14、1)PF=PG PF⊥PG;(2)△FGP是等腰直角三角形,理由见解析;(3)S△PGF最大=.
【解析】
(1)根据等腰三角形的性质和三角形的中位线定理解答即可;
(2)由旋转知,∠ACD=∠BCE,进一步证明△CAD≌△CBE,再利用全等三角形的判定和性质以及三角形中位线定理解答;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,PG最大时,△FGP面积最大,进而解答即可.
【详解】
解(1)PF=PG PF⊥PG;
如图1,∵在△ABC中,AB=BC,点,分别在边AC,BC上,且CD=CE,
∴AC-CD=BC-CE,即AD=BE,点F、P、G分别为DE、DC、BC的中点,
∴PF=AB,PG=CE,
∴PF=PG,
∵点F、P、G分别为DE、DC、BC的中点,
∴PG//BE,PF//AD,
∴∠PFB=∠A,∠DPG=∠DBC,
∴∠FPG=∠DPF+∠DPG
=∠PFB+∠DBA+∠DPG
=∠A+∠DBA+∠DBC
=∠A+∠ABC,
∵∠ABC+∠ACB=180°-∠C
∴∠FPG=180°-90°=90°,PF⊥PG;
(2)△FGP是等腰直角三角形
理由:由旋转知,∠ACD=∠BCE,
∵AC=BC,CD=CE,
∴△CAD≌△CBE(SAS),
∴∠CAD=∠CBE,AD=BE,
利用三角形的中位线得,PG=BE,PF=AD,
∴PG=PF,
∴△FGP是等腰三角形,
利用三角形的中位线得,PG∥CE,
∴∠DPG=∠DBE,
利用三角形的中位线得,PF∥AD,
∴∠PFB=∠DAB,
∵∠DPF=∠DBA+∠PNB=∠DBA+∠DAB,
∴∠GPF=∠DPG+∠DPF=∠DBE+∠DBA+∠DAB
=∠ABE+∠DAB=∠CBA+∠CBE+∠DAB
=∠CBA+∠CAD+∠DAB=∠CBA+∠CAB,
∵∠ACB=90°,
∴∠CBA+∠CAB=90°,
∴∠GPF=90°,
∴△FGP是等腰直角三角形;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,
∴PG最大时,△FGP面积最大,
∴点D在AC的延长线上,
∴AD=AC+CD=11,
∴PG=,
∴S△PGF最大=PG2=
此题属于几何变换综合题,关键是根据三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质进行解答.
15、是,理由见解析.
【解析】
根据,CD平分,,,可得,,根据正方形的判定定理可得:四边形CEDF是正方形.
【详解】
解:四边形CEDF是正方形,
理由:,CD平分,,,
,,
四边形CEDF是正方形,
本题主要考查正方形的判定定理,解决本题的关键是要熟练掌握正方形的判定定理.
16、(1)40;(2)30,50;(3)50500元
【解析】
(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;
(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;
(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.
【详解】
解:(1)样本容量是:6+12+10+8+4=40,
(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50;
(3)×1000=50500(元),
答:该校本学期计划购买课外书的总花费是50500元.
故答案为(1)40;(2)30,50;(3)50500元.
本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
17、证明见解析.
【解析】
首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.
【详解】
证明:∵ 四边形ABCD为平行四边形,且对角线AC和BD交于点O,
∴,,
∴∠EAO=∠FCO,
∵∠AOE=∠COF,
∴ △AOE△COF(ASA),
∴ OE=OF,AE=CF.
本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.
18、(1)见解析;(2)
【解析】
(1)按照树状图的画法画出树状图即可;
(2)根据树状图得出摸到一红一白的概率.
【详解】
(1)树状图如下:
(2)根据树状图得:
共有12种情况,其中恰好1红1白的情况有5种
故概率P=
本题考查利用树状图求概率,注意,本题还可用列表法求概率,应熟练掌握这两种方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.
【详解】
解:∵四边形是正方形,
∴,,.
在中,为的中点,
∴.
∵的周长为18,,
∴,
∴.
在中,根据勾股定理,得,
∴,
∴.
在中,∵,为的中点,
又∵为的中位线,
∴.
故答案为:.
本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.
20、
【解析】
过点A作于点E,根据菱形的性质可推出,过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,根据轴对称可得CH=2CG=2,根据两点之间线段最短的性质,PB+PC的最小值为BH的长,根据勾股定理计算即可;
【详解】
过点A作于点E,如图,
∵边长为4的菱形ABCD中,,
∴AB=AC=4,
∴在中,
,
∴,
∵,
∴,
过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,如图,
则,,
∴四边形CGPF是矩形,
∴CG=PF,
∵,
∴,
∴PF=1,
∴CG=PF=1,
根据抽对称的性质可得,
CG=GH,PH=PC,
∴CH=2CG=2,
根据两点之间线段最短的性质,得,
,
即,
∴PB+PC的最小值为BH的长,
∵,,
∴,
∴在中,
,
∴PB+PC的最小值为.
故答案为:.
本题主要考查了菱形的性质,准确分析轴对称的最短路线知识点是解题的关键.
21、三
【解析】
根据函数的平移规律,一次函数的性质,可得答案.
【详解】
由正比例函数的图象向上平移3个单位,得,
一次函数经过一二四象限,不经过三象限,
故答案为:三.
本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键.
22、<
【解析】
首先求出各组数据的平均数,再利用方差公式计算得出答案.
【详解】
,
,
,
,
则﹤.
故答案为:﹤.
此题主要考查了方差,正确掌握方差计算公式是解题关键.
23、y=﹣2x+1
【解析】
直接根据“上加下减,左加右减”的原则进行解答.
【详解】
把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+1.
故答案为:y=﹣2x+1.
本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、规定完成的日期为12天.
【解析】
关键描述语为:“由甲、乙两队合作3天,余下的工程由乙队单独做正好按期完成”;本题的等量关系为:甲3天的工作量+乙规定日期的工作量=1,把相应数值代入即可求解.
【详解】
解:设规定日期为x天,
则甲工程队单独完成要x天,乙工程队单独完成要(x+4)天,
根据题意得:
解之得:x=12,
经检验,x=12是原方程的解且符合题意.
答:规定完成的日期为12天.
此题考查分式方程的应用,根据工作量为1得到相应的等量关系是解决本题的关键;易错点是得到两人各自的工作时间.
25、(1);(2).
【解析】
(1)与互为有理化因式,根据题意给出的方法,即可求出答案.
(2)与互为有理化因式,根据题意给出的方法即可求出答案.
【详解】
解:(1)
=
=
(2)
=
=
本题考查了分母有理化,能找出分母的有理化因式是解此题的关键.
26、(1)1≤x≤2000;(2)2元.
【解析】
(1)利用已知批发价为每千克3.5元,小王携带现金7000元到这个市场购苹果,求得解析式,又因为批发苹果不少于1千克时,批发价为每千克3.5元,所以x≥1.
(2)把x=800代入函数解析式即可得到结论.
【详解】
(1)由已知批发价为每千克3.5元,小王携带现金7000元到这个市场购苹果得y与x的函数关系式:y=7000﹣3.5x,
∵批发苹果不少于1千克时,批发价为每千克3.5元,
∴x≥1,
∴至多可以买7000÷3.5=2000kg,
故自变量x的取值范围:1≤x≤2000,.
综上所述,y与x之间的函数关系式为:y=7000﹣3.5x(1≤x≤2000);
(2)当x=800时,y=7000﹣3.5×800=2.
故小王付款后剩余的现金为2元.
本题考查了一次函数的应用.利用一次函数性质,解决实际问题,把复杂的实际问题转换为数学问题.
题号
一
二
三
四
五
总分
得分
甲
7
8
9
8
8
乙
6
10
9
7
8
相关试卷
这是一份廊坊三中学2024年九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届西宁市重点中学数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届青海省西宁市数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。