搜索
    上传资料 赚现金
    英语朗读宝

    江西省樟树市2025届数学九上开学综合测试试题【含答案】

    江西省樟树市2025届数学九上开学综合测试试题【含答案】第1页
    江西省樟树市2025届数学九上开学综合测试试题【含答案】第2页
    江西省樟树市2025届数学九上开学综合测试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省樟树市2025届数学九上开学综合测试试题【含答案】

    展开

    这是一份江西省樟树市2025届数学九上开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法中,不正确的是( )
    A.两组对边分别平行的四边形是平行四边形
    B.对角线互相平分且垂直的四边形是菱形
    C.一组对边平行另外一组对边相等的四边形是平行四边形
    D.有一组邻边相等的矩形是正方形
    2、(4分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
    A.平均数不变,方差不变B.平均数不变,方差变大
    C.平均数不变,方差变小D.平均数变小,方差不变
    3、(4分)估算在哪两个整数之间( )
    A.0和1B.1和2C.2和3D.3和4
    4、(4分)若一个正多边形的一个外角是45°,则这个正多边形的边数是( )
    A.10B.9C.8D.6
    5、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是( )L.
    A.5B.3.75C.4D.2.5
    6、(4分)下面几组条件中,能判断一个四边形是平行四边形的是( )
    A.一组对边相等B.两条对角线互相平分
    C.一组对边平行D.两条对角线互相垂直
    7、(4分)已知,则的值等于( )
    A.6B.-6C.D.
    8、(4分)平行四边形ABCD的对角线相交于点0,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果△CDM的周长为6,那么平行四边形ABCD的周长是( )
    A.8B.10C.12D.18
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在ΔABC中,AB=8,AC=6,∠BAC=30°,将ΔABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为________.
    10、(4分)已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.
    11、(4分)用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______
    12、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
    13、(4分)化简:______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.
    15、(8分)八年级(1)班张山同学利用所学函数知识,对函数进行了如下研究:
    列表如下:
    描点并连线(如下图)
    (1)自变量x的取值范围是________;
    (2)表格中:________,________;
    (3)在给出的坐标系中画出函数的图象;
    (4)一次函数的图象与函数的图象交点的坐标为_______.
    16、(8分)已知等腰三角形的周长是,底边是腰长的函数。
    (1)写出这个函数的关系式;
    (2)求出自变量的取值范围;
    (3)当为等边三角形时,求的面积。
    17、(10分)解不等式组:,并把不等式组的解集在数轴上表示出来.
    18、(10分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.
    (1)求证:△ADE≌△FCE.
    (2)若∠BAF=90°,BC=5,EF=3,求CD的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若点位于第二象限,则x的取值范围是______.
    20、(4分)如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.
    21、(4分)八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为86分;八(2)班54人,平均成绩为80分,则这两个班的平均成绩为__分.
    22、(4分)已知直线经过点(-2,2),并且与直线平行,那么________.
    23、(4分)如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,抛物线与轴交于, (在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.
    (1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;
    (2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.
    25、(10分)如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.
    (1)求证:CE为⊙O的切线;
    (2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)
    26、(12分)如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(顶点都在格点上的四边形称为格点四边形)
    (1)在图①中画出一个面积最小的中心对称图形PAQB,
    (2)在图②中画出一个四边形PCQD,使其是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据平行四边形、菱形和正方形的判定方法进行分析可得.
    【详解】
    A. 两组对边分别平行的四边形是平行四边形,正确;
    B. 对角线互相平分且垂直的四边形是菱形,正确;
    C. 一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故错误;
    D. 有一组邻边相等的矩形是正方形,正确.
    故选C.
    2、C
    【解析】
    解: =(160+165+170+163+1)÷5=165,S2原=, =(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.
    3、C
    【解析】
    原式化简后,估算即可确定出范围.
    【详解】
    解:原式=﹣+1=+1,
    ∵,
    ∴,即,
    则2﹣+1在2和3两个整数之间,
    故选:C.
    本题考查了无理数的估算,能够正确化简,并熟知是解题的关键.
    4、C
    【解析】
    试题分析:∵多边形外角和="360°,"
    ∴这个正多边形的边数是360°÷45°="1."
    故选C.
    考点:多边形内角与外角.
    5、B
    【解析】
    观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.
    【详解】
    每分钟的进水量为:20÷4=5(升),
    每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).
    故选B.
    本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.
    6、B
    【解析】
    试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法,采用排除法,逐项分析判断.
    解:A、一组对边相等,不能判断,故错误;
    B、两条对角线互相平分,能判断,故正确;
    C、一组对边平行,不能判断,故错误;
    D、两条对角线互相垂直,不能判断,故错误.
    故选B.
    考点:平行四边形的判定.
    7、A
    【解析】
    由已知可以得到a-b=-4ab,把这个式子代入所要求的式子,化简就得到所求式子的值是6,故选A
    8、C
    【解析】
    试题分析:根据OM⊥AC,O为AC的中点可得AM=MC,根据△CDM的周长为6可得AD+DC=6,则四边形ABCD的周长为2×(AD+DC)=1.
    考点:平行四边形的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、10.
    【解析】
    根据题意可得∠BAC1=90°,根据旋转可知AC1=6,在RtΔBAC1中,利用勾股定理可求得BC1的长=.
    【详解】
    ∵ΔABC绕点A逆时针旋转60°得到ΔAB1C1
    ∴AC=AC1,∠CAC1=60°,
    ∵AB=8,AC=6,∠BAC=30°,
    ∴∠BAC1=90°,AB=8,AC1=6,
    ∴在RtΔBAC1中,BC1的长=,
    故答案为:10.
    本题考查了图形的旋转和勾股定理,通过理解题意将∠BAC1=90°找到即可解题.
    10、14
    【解析】
    根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.
    【详解】
    解:∵的面积为
    ∴=
    解得=2
    根据勾股定理得:==7
    则代数式==2×7=14
    故答案为:14
    本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.
    11、3y2-y-1=0
    【解析】
    将分式方程中换成3y,换成,去分母即可得到结果.
    【详解】
    解:根据题意,得:3y-=1,
    去分母,得:3y2-1=y,
    整理,得:3y2-y-1=0.
    故答案为:3y2-y-1=0.
    本题考查了用换元法解分式方程.
    12、(3+,)或(-3+,)
    【解析】
    根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
    【详解】
    如图,
    设A(m,m)(m>0),如图所示,
    ∴点B的纵坐标为m,
    ∵点B在双曲线y=上,
    ∴,
    ∴x=,
    ∵AB=6,
    即|m-|=6,
    ∴m-=6或-m=6,
    ∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
    ∴B(3+,)或(-3+,),
    故答案为:(3+,)或(-3+,).
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    13、3
    【解析】
    分析:根据算术平方根的概念求解即可.
    详解:因为32=9
    所以=3.
    故答案为3.
    点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
    三、解答题(本大题共5个小题,共48分)
    14、1
    【解析】
    依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=1.
    【详解】
    ∵AB=13,AC=20,AD=12,AD⊥BC,
    ∴Rt△ABD中,BD===5,
    Rt△ACD中,CD===16,
    ∴BC=BD+CD=5+16=1.
    本题主要考查勾股定理,解题的关键是熟练掌握勾股定理公式a2+b2=c2及其变形.
    15、(1)全体实数;(2)1,1;(3)见解析;(4)和.
    【解析】
    (1)根据函数解析式,可得答案;
    (2)根据自变量与函数值得对应关系,可得答案;
    (3)根据描点法画函数图象,可得答案;
    (4)根据图象,可得答案.
    【详解】
    解:(1)∵函数y=|x+2|-x-1
    ∴自变量x的取值范围为全体实数
    故答案为:全体实数;
    (2)当x=-2时,m=|-2+2|+2-1=1,
    当x=0时,n=|0+2|-0-1=1,

    故答案为:1,1;
    (3)如下图
    (4)在(3)中坐标系中作出直线y=-x+3,如下:
    由图象得:一次函数y=-x+3的图象与函数y=|x+2|-x-1的图象交点的坐标为:(-6,9)和(2,1)
    故答案为:(-6,9)和(2,1).
    本题考查了函数的图象与性质,利用描点法画函数图象,利用图象得出两个函数的交点是解题关键.
    16、(1)y=18-2x,(2),(3)cm2.
    【解析】
    (1)根据等腰三角形周长公式可求出底边长与腰的函数关系式;
    (2)由三角形两边之和大于第三边的关系可知x的取值范围;
    (3)当为等边三角形时, AB=BC=AC=6,根据勾股定理求出三角形的高,然后根据三角形的面积公式求解即可.
    【详解】
    (1)等腰三角形的底边长为y、腰长为x,
    依题意和已知,有:
    ∵y+2x=18,
    ∴y=18-2x;
    (2)∵,
    ∴18-2x>0,
    ∴x

    相关试卷

    江西省新余九中学2024年数学九上开学综合测试模拟试题【含答案】:

    这是一份江西省新余九中学2024年数学九上开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省兴国县2024年数学九上开学综合测试试题【含答案】:

    这是一份江西省兴国县2024年数学九上开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省上饶中学2025届数学九上开学综合测试模拟试题【含答案】:

    这是一份江西省上饶中学2025届数学九上开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map