江苏省无锡市江阴市南闸实验学校2024年数学九年级第一学期开学复习检测试题【含答案】
展开
这是一份江苏省无锡市江阴市南闸实验学校2024年数学九年级第一学期开学复习检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,,,,…都是等腰直角三角形,其直角顶点,,,…均在直线上.设,,,…的面积分别为,,,…,根据图形所反映的规律,( )
A.B.C.D.
2、(4分)下列命题中,正确的是( )
A.两条对角线相等的四边形是平行四边形
B.两条对角线相等且互相垂直的四边形是矩形
C.两条对角线互相垂直平分的四边形是菱形
D.两条对角线互相平分且相等的四边形是正方形
3、(4分)小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为( )
A.8,1B.1,9C.8,9D.9,1
4、(4分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克,=608千克,亩产量的方差分别是="29." 6,="2." 7. 则关于两种小麦推广种植的合理决策是 ( )
A.甲的平均亩产量较高,应推广甲
B.甲、乙的平均亩产量相差不多,均可推广
C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲
D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙
5、(4分)下列方程是一元二次方程的是( )
A.B.C.D.
6、(4分)关于的分式方程的解为正实数,则实数的取值范围是
A.且B.且C.且D.且
7、(4分)下列四个图形中,既是轴对称又是中心对称的图形是( )
A.4个B.3个C.2个D.1个
8、(4分)如图,在中,平分,且,则的周长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.
10、(4分)如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________ 米
11、(4分)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.
12、(4分)若分式的值为正数,则x的取值范围_____.
13、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校要对如图所示的一块地进行绿化,已知,,,,,求这块地的面积.
15、(8分)如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:(1)△BCQ≌△CDP;(2)OP=OQ.
16、(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,
(1)请在所给的网格内画出以线段AB、BC为边的菱形,并求点D的坐标;
(2)求菱形ABCD的对角线AC的长.
17、(10分)学校准备从甲乙两位选手中选择一位参加汉字听写大赛,学校对两位选手的表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们的各项成绩(百分制)如表:
如果表达能力、阅读理解、综合素质和汉字听写成绩按照2:1:3:4的比确定,请分别计算两名选手的平均成绩,从他们的成绩看,应选派谁?
18、(10分)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)m= ,n= ,并请根据以上信息补全条形统计图;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)根据抽样调查的结果,请你估计该校900名学生中有多少学生最喜欢科普类图书.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.
20、(4分)不等式组的整数解是__________.
21、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为_____.
22、(4分)已知,则=_____.
23、(4分)若反比例函数的图象经过点,则的图像在_______象限.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、DQ、CQ、BQ,设AP=x.
(1)BQ+DQ的最小值是_______,此时x的值是_______;
(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.
①求证:点E是CD的中点; ②求x的值.
(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.
25、(10分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.
(1)请你猜想与之间的数量与位置关系,并加以证明;
(2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;
(3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.
26、(12分)如图,在菱形ABCD中,AC=8,BD=6,求△ABC的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.
【详解】
解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,
∵P1(3,3),且△P1OA1是等腰直角三角形,
∴OC=CA1=P1C=3,
设A1D=a,则P2D=a,
∴OD=6+a,
∴点P2坐标为(6+a,a),
将点P2坐标代入,得:,
解得:
∴A1A2=2a=3,,
同理求得,
故选:A
本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.
2、C
【解析】
根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.
【详解】
解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;
B、对角线相等的平行四边形是矩形,所以B选项为假命题;
C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;
D、对角线互相垂直的矩形是正方形,所以D选项为假命题.
故选A.
本题考查了命题与定理:判断一件事情的语句,叫做命题命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
3、D
【解析】
试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,
最中间的数是9,则中位数是9;
1出现了3次,出现的次数最多,则众数是1;
故选D.
考点:众数;中位数.
4、D
【解析】
分析:本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.
解答:解:∵=610千克,=608千克,
∴甲、乙的平均亩产量相差不多
∵亩产量的方差分别是S2甲=29.6,S2乙=2.1.
∴乙的亩产量比较稳定.
故选D.
5、A
【解析】
根据一元二次方程的定义解答即可.
【详解】
解:根据一元二次方程的定义:即含有一个未知数,且未知数的次数为1,可见只有A符合,故答案为A.
本题考查了一元二次方程的定义,即理解只有一个未知数且未知数的次数为1是解答本题的关键.
6、D
【解析】
先根据分式方程的解法,求出用m表示x的解,然后根据分式有解,且解为正实数构成不等式组求解即可.
【详解】
去分母,得
x+m+2m=3(x-2)
解得x=
∵关于x的分式方程的解为正实数
∴x-2≠0,x>0
即≠2,>0,
解得m≠2且m<6
故选D.
点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m的式子表示x解分式方程,构造不等式组是解题关键.
7、C
【解析】
根据轴对称图形与中心对称图形的概念结合各图形的特点求解.
【详解】
①是轴对称图形,也是中心对称图形,符合题意;
②是轴对称图形,不是中心对称图形,不符合题意;
③是轴对称图形,是中心对称图形,符合题意;
④轴对称图形,不是中心对称图形,不符合题意.
综上可得①③符合题意.
故选:C.
考查了中心对称图形与轴对称图形的识别.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.
8、D
【解析】
根据角平分线的定义可得∠BAE=∠DAE,再根据平行四边形的对边平行,可得AD∥BC,然后利用两直线平行,内错角相等可得∠AEB=∠DAE,根据等角对等边可得AB=BE,然后根据平行四边形的周长公式列式计算即可得解.
【详解】
解:∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵在▱ABCD中,AD∥BC,
∴∠AEB=∠DAE,
∴AB=BE=2,
∵BE=CE=2,
∴BC=4,
∴▱ABCD的周长=2(AB+BC)=2×(2+4)=1.
故选:D.
本题考查平行四边形的性质,平行线的性质,熟记各性质并判断出AB=BE是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.
【详解】
如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,
又,
,
∽,
又是AB的中点,,
,
设,则,,
,,
,
反比例函数的图象经过点C和AB的中点D,
,
解得,
,
又,
,
,
故答案为.
本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
10、不稳定性; 4.2
【解析】
(1)根据四边形的不稳定性即可解决问题.
(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.
【详解】
解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动 ,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;
(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.
又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.
故答案为:不稳定性,4.2.
本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
11、2
【解析】
由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
【详解】
解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,
∴正方形EFGH的周长=4EF=4×=2 ;
故答案为2.
本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.
12、x>1
【解析】
试题解析:由题意得:
>0,
∵-6<0,
∴1-x<0,
∴x>1.
13、x>﹣3 x≤﹣
【解析】
当x>−3时,2x+6>0;
解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.
故答案为x>−3;x⩽﹣.
三、解答题(本大题共5个小题,共48分)
14、24m2.
【解析】
连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,
根据△ABC的面积减去△ACD的面积就是所求的面积.
【详解】
解:连接
∵∴
在中,根据勾股定理
在中,
∵
是直角三角形
∴.
本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC是直角三角形是解题的关键.同时考查了直角三角形的面积公式.
15、(1)见解析;(2)见解析.
【解析】
(1)根据正方形的性质和DP⊥CQ于点E可以得到证明△BCQ≌△CDP的全等条件;
(2)根据(1)得到BQ=PC,然后连接OB,根据正方形的性质可以得到证明△BOQ≌△COP的全等条件,然后利用全等三角形的性质就可以解决题目的问题.
【详解】
证明:(1)∵四边形ABCD是正方形,
∴∠B=∠PCD=90°,BC=CD,
∴∠2+∠3=90°,
又∵DP⊥CQ,
∴∠2+∠1=90°,
∴∠1=∠3,
在△BCQ和△CDP中,
∴△BCQ≌△CDP;
(2)连接OB,
由(1)△BCQ≌△CDP可知:BQ=PC,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∵点O是AC中点,
∴BO=AC=CO,∠4=∠ABC=45°=∠PCO,
在△BOQ和△COP中,
∴△BOQ≌△COP,
∴OQ=OP.
解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用它们构造证明全等三角形的条件,然后通过全等三角形的性质解决问题.
16、(1)D(-2,1);(2)3
【解析】
(1)根据菱形的四条边相等,可分别以点A,C为圆心,以AB长为半径画弧,两弧的交点即为点D的位置,根据所在象限和距坐标轴的距离得到点D的坐标即可;
(2)利用勾股定理易得菱形的一条对角线AC的长即可.
【详解】
解:(1)如图,菱形ABCD为所求图形,D(-2,1);
(2)AC==3.
主要考查了菱形四条边相等的判定,及勾股定理的运用,熟练掌握菱形的性质及勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
17、应派乙去
【解析】
根据选手四项的得分求出加权平均成绩,比较即可得到结果.
【详解】
=85×0.2+78×0.1+85×0.3+73×0.4=79.5
=73×0.2+80×0.1+82×0.3+83×0.4=80.4
从他们的成绩看,应选派乙.
本题考查了加权平均数,熟练掌握加权平均数的求法是解答本题的关键.
18、(1)50,30;(2)72;(3)270名学生.
【解析】
(1)根据其他的人数和所占的百分比即可求得m的值,从而可以求得n的值,求得喜爱文学的人数,从而可以将条形统计图补充完整;
(2)根据扇形统计图中的数据可以求得“艺术”所对应的扇形的圆心角度数;
(3)根据统计图中的数据可以估计该校900名学生中有多少学生最喜欢科普类图书.
【详解】
解:(1) ,
文学有: ,
补全的条形统计图如右图所示;
故答案为50,30;
(2)由题意可得,“艺术”所对应的扇形的圆心角度数是:,
故答案为72;
(3)由题意可得,,
即该校900名学生中有270名学生最喜欢科普类图书.
本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、对应角相等的三角形全等
【解析】
根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.
【详解】
命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,
故其逆命题是对应角相等的三角形是全等三角形.
故答案是:对应角相等的三角形是全等三角形.
考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
20、,,1
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.
【详解】
解:;
由①得:;
由②得:;
不等式组的解集为:;
所以不等式组的整数解为,,1,
故答案为:,,1.
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
21、1
【解析】
根据菱形的性质得出AC⊥BD,由勾股定理可求AD=CD=1,再根据平行四边形的判定定理得四边形OCED为平行四边形,由矩形的判定定理得出四边形OCED是矩形,则该矩形的对角线相等,即CD=OE=1.
【详解】
证明:∵四边形ABCD为菱形,
∴AC⊥BD,OA=AC=3,OD=BD=4,
∴∠AOD=90°,
∴AD==1=CD
∵DE∥AC,CE∥BD
∴四边形OCED为平行四边形,
又∵AC⊥BD
∴四边形OCED为矩形
∴CD=OE=1
故答案为:1
本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
22、-
【解析】
∵,
∴可设:,
∴.
故答案为.
23、二、四
【解析】
用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.
【详解】
解:将点代入得,解得:
因为k0时,图像在一、三象限,当k
相关试卷
这是一份江苏省无锡市江阴市南闸实验学校2025届数学九年级第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市江阴市南闸实验学校2024-2025学年九年级上学期10月质量调研数学试题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省江阴市南闸实验学校九上数学开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。