江苏省苏州市东山中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】
展开
这是一份江苏省苏州市东山中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列三角形纸片,能沿直线剪一刀得到直角梯形的是( )
A.B.C.D.
2、(4分)如图,,两地被池塘隔开,小明想测出、间的距离;先在外选一点,然后找出,的中点,,并测量的长为,由此他得到了、间的距离为( )
A.B.C.D.
3、(4分)坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍,若A点在第二象限,则A点坐标为( )
A.(﹣3,9)B.(﹣3,1)C.(﹣9,3)D.(﹣1,3)
4、(4分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在( )
A.1<a<2B.﹣2<a<0C.﹣3≤a≤﹣2D.﹣10<a<﹣4
5、(4分)若关于x的一元二次方程ax2+bx﹣3=0(a≠0)的解是x=﹣1,则﹣5+2a﹣2b的值是( )
A.0B.1C.2D.3
6、(4分)已知四边形,有下列四组条件:①,;②,;③,;④,.其中不能判定四边形为平行四边形的一组条件是( )
A.①B.②C.③D.④
7、(4分)下列命题是真命题的是( )
A.若,则
B.若,则
C.若是一个完全平方公式,则的值等于
D.将点向上平移个单位长度后得到的点的坐标为
8、(4分)下列说法正确的是( )
A.了解全国中学生最喜爱哪位歌手,适合全面调查.
B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=1,S乙2=0.1,则甲麦种产量比较稳.
C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.
D.一组数据:3,2,1,1,4,6的众数是1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是____cm.
10、(4分)甲、乙两人进行射击比赛,在相同条件下各射击 12 次,他们的平均成绩各为 8 环,12 次射击成绩的方差分别是:S 甲=3,S 乙=2.5,成绩较为稳定的是__________.(填 “甲”或“乙”)
11、(4分)计算:=_____________。
12、(4分)如图,平行四边形中,点是边上一点,连接,将沿着翻折得,交于点.若,,,则_____.
13、(4分)将一个矩形纸片按如图所示折叠,若, 则的度数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,点P是AC边上一个动点,过P作直线EF∥BC,交∠ACB的平分线于点E,交∠ACB的外角∠ACD平分线于点F.
(1)请说明:PE=PF;
(2)当点P在AC边上运动到何处时,四边形AECF是矩形?为什么?
15、(8分)如图,△ABC与△A′B′C′是位似图形,且位似比是1:1.
(1)在图中画出位似中心点O;
(1)若AB=1cm,则A′B′的长为多少?
16、(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.
(1)求直线的解析式;
(2)在线段上找一点,使得,线段与相交于点.
①求点的坐标;
②点在轴上,且,直接写出的长为 .
17、(10分)定义:如果一元一次不等式①的解都是一元一次不等式②的解,那么称一元一次不等式①是一元一次不等式②的蕴含不等式.例如:不等式的解都是不等式的解,则是的蕴含不等式.
(1)在不等式,,中,是的蕴含不等式的是_______;
(2)若是的蕴含不等式,求的取值范围;
(3)若是的蕴含不等式,试判断是否是的蕴含不等式,并说明理由.
18、(10分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);
②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=1.则GH的长为__________.
20、(4分)如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.
21、(4分)如图:使△AOB∽△COD,则还需添加一个条件是: .(写一个即可)
22、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
23、(4分)若,则=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′(不写画法);
(2)并直接写出点B′、C′的坐标:B′( )、C′( );
(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
25、(10分) (1)因式分解:m3n-9mn;(2)解不等式组:.
26、(12分)在矩形中,,,将沿着对角线对折得到.
(1)如图,交于点,于点,求的长.
(2)如图,再将沿着对角线对折得到,顺次连接、、、,求:四边形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
本题就是应用直角梯形的这个性质作答的, 直角梯形:有一个角是直角的梯形叫直角梯形.由梯形的定义得到直角梯形必有两个直角.
【详解】
直角梯形应该有两个角为直角,C中图形已经有一直角,再沿一直角边剪另一直角边的平行线即可.如图:
故选:C.
此题是考查了直角梯形的性质与三角形的内角和定理的应用,掌握直角梯形的性质是解本题的关键.
2、B
【解析】
根据三角形中位线定理解答.
【详解】
∵点M,N分别是AC,BC的中点,
∴AB=2MN=38(m),
故选B.
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.
3、C
【解析】
根据点到x轴的距离等于纵坐标的绝对值求出点A的纵坐标,再根据点到y轴的距离等于横坐标的绝对值求出横坐标,再根据A点在第二象限,即可得解.
【详解】
解:∵A点到x轴的距离为3,A点在第二象限,
∴点A的纵坐标为3,
∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,
∴点A的横坐标为-9,
∴点A的坐标为(-9,3).
故选:C.
本题考查了点的坐标,主要利用了点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度,需熟练掌握并灵活运用.
4、D
【解析】
试题分析:直线l与y轴的交点(0,-3),而y=a为平行于x轴的直线,
观察图象可得,当a<-3时,直线l与y=a的交点在第四象限.
故选D
考点:数形结合思想,一次函数与一次方程关系
5、B
【解析】
先把x=﹣1代入方程ax2+bx﹣3=0得a﹣b=3,再把﹣5+2a﹣2b变形为﹣5+2(a﹣b),然后利用整体代入的方法计算.
【详解】
把x=﹣1代入方程ax2+bx﹣3=0得a﹣b﹣3=0,则a﹣b=3,
所以﹣5+2a﹣2b=﹣5+2(a﹣b)=﹣5+2×3=1.
故选B.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
6、D
【解析】
①由有两组对边分别平行的四边形是平行四边形,可证得四边形ABCD是平行四边形;
②由有两组对边分别相等的四边形是平行四边形,可证得四边形ABCD是平行四边形;
③由一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,
④由已知可得四边形ABCD是平行四边形或等腰梯形.
【详解】
解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判定这个四边形是平行四边形;
②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判定这个四边形是平行四边形;
③根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知③能判定这个四边形是平行四边形;
④由一组对边平行,一组对边相等的四边形不一定是平行四边形,可知④错误;
故给出的四组条件中,①②③能判定这个四边形是平行四边形,
故选:D.
此题考查了平行四边形的判定.注意熟记平行四边形的判定定理是解此题的关键.
7、B
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
、若,则,是假命题;
、若,则,是真命题;
、若是一个完全平方公式,则的值等于,是假命题;
、将点向上平移3个单位后得到的点的坐标为,是假命题.
故选:.
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉掌握相关定理.
8、D
【解析】
根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.
【详解】
A、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用
抽样调查的调查方式,故本选项错误;
、甲乙两种麦种连续3年的平均亩产量的方差为:,,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;
、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;
、.一组数据:3,2,1,1,4,6的众数是1,故本选项正确;.
故选.
本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、18
【解析】
解:∵OA=OB,∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=OB=18cm
本题考查等边三角形的判定与性质,难度不大.
10、乙
【解析】
根据方差的意义,比较所给的两个方差的大小即可得出结论.
【详解】
∵,乙的方差小,
∴本题中成绩较为稳定的是乙,故填乙.
本题考查方差在实际中的应用.方差反应一组数据的稳定程度,方差越大这组数据越不稳定,方差越小,说明这组数据越稳定.
11、2+
【解析】
按二次根式的乘法法则求解即可.
【详解】
解:.
本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.
12、
【解析】
通过证明△AB'F∽△DEF,可得,可求AB'的长,由折叠的性质可得AB=AB'= .
【详解】
解:∵AB′∥ED ∴△AB'F∽△DEF
∴ ∴ ∴AB'=
∵将△ABE沿着AE翻折得△AB′E, ∴AB=AB'=,
故答案为:.
本题考查了翻折变换,平行四边形的性质,相似三角形的判定和性质,利用相似三角形的性质求线段的长度是本题的关键.
13、40°
【解析】
依据平行线的性质,即可得到,,进而得出,再根据进行计算即可.
【详解】
解:如图所示,,
,,
由折叠可得,,
,
故答案为:.
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)当点P在AC中点时,四边形AECF是矩形,理由详见解析.
【解析】
(1)首先证明∠E=∠2根据等角对等边可得EP=PC,同理可得PF=PC,进而得到EP=PF;
(2)当点P在AC中点时,四边形AECF是矩形,首先根据对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,再证明∠ECF=90°即可.
【详解】
(1)∵CE平分∠BCA,
∴∠1=∠2,
∵EF∥BC,
∴∠E=∠1,
∴∠E=∠2,
∴EP=PC,
同理PF=PC,
∴EP=PF;
(2)结论:当点P在AC中点时,四边形AECF是矩形,
理由:∵PA=PC,PE=PF,
∴四边形AECF是平行四边形,
∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=180°,
∴∠2+∠3=90°,
即∠ECF=90°,
∴平行四边形AECF是矩形.
本题考查了等腰三角形的判定与性质,平行四边形的判定,矩形的判定,熟练掌握相关知识是解题的关键.
15、(1)见解析;(1)的长为
【解析】
(1)根据位似图形的性质直接得出位似中心即可;
(1)利用位似比得出对应边的比进而得出答案.
【详解】
解:(1)如图所示:连接BB′、CC′,它们的交点即为位似中心O;
(1)∵△ABC与△A′B′C′是位似图形,且位似比是1:1,
AB=1cm,
∴A′B′的长为4 cm.
此题主要考查了位似图形的性质,利用位似比等于对应边的比得出是解题关键.
16、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.
【解析】
(1)求出B,C两点坐标,利用待定系数法即可解决问题.
(2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.
②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据全等三角形,分两种情形分别求解即可.
【详解】
(1)直线交轴于点,交轴于点,
,,
点在轴的负半轴上,且的面积为8,
,
,则,
设直线的解析式为即,
解得,
故直线的解析式为.
(2)①连接.
点是直线和直线的交点,故联立,
解得,即.
,故,且,
,,
,
,,
即,可求直线的解析式为,
点是直线和直线的交点,
故联立,解得,
即,.
②如图1中,将线段绕点顺时针旋转得到,作轴于,轴于.
则,
,,
,,
直线的解析式为,
设直线交轴于,则,
,
.
作,则,
可得直线的解析式为,
,
,
综上所述,满足条件的的值为8或.
本题考查用待定系数法求一次函数的解析式,两条直线的交点,利用坐标求线段长度证全等,灵活运用一次函数以及全等是解题的关键.
17、(1)x>3;(2)m<9;(3)是,理由见解析.
【解析】
(1)根据蕴含不等式的定义求解即可;
(2)先求出不等式的解集,再根据蕴含不等式的定义求出m的取值范围即可;
(3)由是的蕴含不等式求出n的取值范围,再判断是否是的蕴含不等式.
【详解】
(1)由蕴含不等式的定义得,是的蕴含不等式.
故答案为:;
(2)由得,x>3-m,
∵是的蕴含不等式,
∴3-m>-6,
∴m<9;
(3)∵是的蕴含不等式,
∴
∴n>1,
∴-n<-1,
∴-n+3<2
∴是的蕴含不等式.
此题主要考查了不等式的解集,关键是正确确定两个不等式的解集.
18、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.
【解析】
(1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;
②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;
(2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;
(3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.
【详解】
(1)①令,则 ,解得 ,
∴ ;
令, 则,
∴;
②当t=2时, ,图形如下:
(2)如图,
∵四边形DCEF与四边形ABEF关于直线EF对称,,
.
,
.
,
,
,
,
即轴,
,
∴四边形DHEF为平行四边形.
要使四边形DHEF为菱形,只需,
,
,
.
又,
,
,
解得 ,
∴当时,四边形DHEF为菱形;
(3)连接AD,BC,
∵AB和CD关于EF对称,
∴ ,
∴四边形ABCD为平行四边形.
由(2)知,
.
,
,
∴四边形ABCD为矩形.
∵ ,
.
,
,
∴四边形ABCD的面积为 ,
解得,
∴当时,四边形ABCD的面积为1.
本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P,根据正方形的性质可得,再根据同角的余角相等可得,然后利用“角边角”证明,根据全等三角形对应边相等可得,然后代入数据即可得解.
【详解】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P
∵四边形ABCD是正方形
∴
∴
∵
∴
∴
在△EFM和△HGN中
∴
∴
∵
∴
即GH的长为1
故答案为:1.
本题考查了矩形的线段长问题,掌握正方形的性质、全等三角形的性质以及判定定理是解题的关键.
20、14
【解析】
根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.
【详解】
由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6
∵∠B=120°,BC=4
∴
解得AB=6
H点表示点P到达A时运动的路程为4+6+4=14
故答案为14
本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.
21、∠A=∠C(答案不唯一).
【解析】
添加条件是∠A=∠C,根据相似三角形的判定(有两角对应相等的两三角形相似)证明即可.
【详解】
添加的条件是:∠A=∠C,
理由是:∵∠A=∠C,∠DOC=∠BOA,
∴△AOB∽△COD,
故答案为:∠A=∠C.本题答案不唯一.
22、1
【解析】
解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
故答案为:1.
本题考查三角形的中位线定理.
23、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).
【解析】
(1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;
(2)根据平面直角坐标系写出点B′、C′的坐标即可;
(3)根据平移规律写出即可.
【详解】
解:(1)△A′B′C′如图所示;
(2)B′(﹣4,1)、C′(﹣1,﹣1);
(3)∵点A(3,4)、A′(﹣2,2),
∴平移规律为向左平移5个单位,向下平移2个单位,
∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).
故答案为B′(﹣4,1)、C′(﹣1,﹣1);(a﹣5,b﹣2).
本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
25、(1);(2).
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式;
(2),
由①得:,
由②得:,
则不等式组的解集为.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
26、(1);(2)的面积是.
【解析】
(1)由矩形的性质可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折叠的性质和平行线的性质可得AE=CE,由勾股定理可求AE的长,由三角形面积公式可求EF的长;
(2)由折叠的性质可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可证△BAM≌△DCN,△AMD≌△CNB可得
MD=BN,BM=DN,可得四边形MDNB是平行四边形,通过证明四边形MDNB是矩形,可得∠BND=90°,由三角形面积公式可求DF的长,由勾股定理可求BN的长,即可求四边形BMDN的面积.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC
∴AC==5,
∵将Rt△ABC沿着对角线AC对折得到△AMC.
∴∠BCA=∠ACE,
∵AD∥BC
∴∠DAC=∠BCA
∴∠EAC=∠ECA
∴AE=EC
∵EC2=ED2+CD2,
∴AE2=(4−AE)2+9,
∴AE= ,
∵S△AEC=×AE×DC=×AC×EF,
∴×3=5×EF,
∴EF=;
(2)如图所示:
∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,
∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,
∵AB∥CD
∴∠BAC=∠ACD
∴∠BAC=∠ACD=∠CAM=∠ACN
∴∠BAM=∠DCN,且BA=AM=CD=CN
∴△BAM≌△DCN(SAS)
∴BM=DN
∵∠BAM=∠DCN
∴∠BAM−90°=∠DCN−90°
∴∠MAD=∠BCN,且AD=BC,AM=CN
∴△AMD≌△CNB(SAS)
∴MD=BN,且BM=DN
∴四边形MDNB是平行四边形
连接BD,
由(1)可知:∠EAC=∠ECA,
∵∠AMC=∠ADC=90°
∴点A,点C,点D,点M四点共圆,
∴∠ADM=∠ACM,
∴∠ADM=∠CAD
∴AC∥MD,且AC⊥DN
∴MD⊥DN,
∴四边形BNDM是矩形
∴∠BND=90°
∵S△ADC=×AD×CD=×AC×DF
∴DF=
∴DN=
∵四边形ABCD是矩形
∴AC=BD=5,
∴BN=
∴四边形BMDN的面积=BN×DN=×=.
本题是四边形综合题,考查了矩形的判定和性质,折叠的性质,勾股定理,全等三角形的判定和性质,证明四边形BNDM是矩形是本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省溧水县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省苏州市胥江实验中学数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市东林中学数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。