淮安市重点中学2025届九上数学开学学业质量监测试题【含答案】
展开
这是一份淮安市重点中学2025届九上数学开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)当分式的值为0时,x的值为( )
A.0B.3C.﹣3D.±3
2、(4分)下列多项式能用完全平方公式分解因式的是( ).
A.a2-ab+b2B.x2+4x – 4C.x2-4x+4D.x2-4x+2
3、(4分)为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和众数分别是( )
A.11,11B.12,11C.13,11D.13,16
4、(4分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
A.B.
C.D.
5、(4分)若(为整数),则的值可以是( )
A.6B.12C.18D.24
6、(4分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个B.2 个C.3 个D.4个
7、(4分)如图,平面直角坐标系中,的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与有交点时,b的取值范围是( )
A.B.
C.D.
8、(4分)小颖现已存款200元,为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是( )
A.y=10xB.y=120xC.y=200-10xD.y=200+10x
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知5个数的平均数为,则这六个数的平均数为___
10、(4分)如图,△ABC中,D,E分别为AB,AC的中点,∠B=70°,则∠ADE= 度.
11、(4分)根据图中的程序,当输入数值﹣2时,输出数值为a;若在该程序中继续输入数值a时,输出数值为_____.
12、(4分)已知m是一元二次方程的一个根 , 则代数式的值是_____
13、(4分)如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,平行四边形中,点分别是的中点.求证.
15、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和万件,现假定该公司每月投递的快件总件数的增长率相同.
求该公司投递快件总件数的月平均增长率;
如果平均每人每月可投递快递万件,那么该公司现有的16名快递投递员能否完成今年6月份的快递投递任务?
16、(8分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单位:分)情况如下表:
(1)直接写出该同学所得分数的众数与中位数;
(2)计算该同学所得分数的平均数.
17、(10分)某智能手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
已知A,B两款手机的进货和销售价格如下表:
(1)今年A款手机每部售价多少元?
(2)该店计划新进一批A款手机和B款手机共90部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?
18、(10分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.
(1)求证:四边形BEDF是平行四边形;
(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.
①当CD=6,CE=4时,求BE的长.
②探究BH与AF的数量关系,并给予证明.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在直角梯形ABCD中,,,,联结BD,若△BDC是等边三角形,那么梯形ABCD的面积是_________;
20、(4分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).
21、(4分)如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)
22、(4分)若正多边形的一个内角等于,则这个正多边形的边数是_______条.
23、(4分)如图,在平面直角坐标系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3,…的顶点B1,B2,B3,…在x轴上,顶点C1,C2,C3,…在直线y=kx+b上,若正方形OA1B1C1,B1A2B2C2的对角线OB1=2,B1B2=3,则点C3的纵坐标是______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.
(1)求证:BE=AF;
(2)若∠ABC=60°,BD=6,求四边形ADEF的面积。
25、(10分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.
(1)求的进价分别是每个多少元?
(2)该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?
26、(12分)为了加强公民的节水意识,合理利用水资源,各地采取价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过立方米时,水费按每立方米元收费,超过立方米时,不超过的部分每立方米仍按元收费,超过的部分每立方米按元收费,该市某户今年月份的用水量和所交水费如下表所示:
设某户每月用水量(立方米),应交水费(元)
求的值,当时,分别写出与的函数关系式.
若该户月份用水量为立方米,求该月份水费多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分式的值为0,则分子为0,分母不为0,列方程组即可求解.
解:根据题意得,,
解得,x=3;
故选B.
2、C
【解析】
能用完全平方公式分解因式的式子的特点是:有三项;两项平方项的符号必须相同;有两数乘积的2倍.
【详解】
A、a2-ab+b2不符合能用完全平方公式分解因式的式子的特点;
B、x2+4x-4不符合能用完全平方公式分解因式的式子的特点;
C、x2-4x+4能用完全平方公式分解因式;
D、x2-4x+2不符合能用完全平方公式分解因式的式子的特点.
故选C.
本题考查利用完全平方公式分解因式,熟记公式结构是解题的关键.
3、D
【解析】
众数是出现次数最多的数,中位数是把数据从小到大排列位置处于中间的数;
【详解】
将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,
中位数为:13;
数据16出现的次数最多,故众数为16.
故选:D.
此题考查中位数,众数,解题关键在于掌握其定义.
4、C
【解析】
本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.
【详解】
最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.
故本题选C.
本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.
5、C
【解析】
根据(n为整数),可得:m的值等于一个整数的平方与2的乘积,据此求解即可.
【详解】
∵(n为整数),
∴m的值等于一个整数的平方与2的乘积,
∵12=22×3,1=32×2,24=22×6,
∴m的值可以是1.
故选:C.
此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.
6、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
7、B
【解析】
将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.
【详解】
解:直线y=x+b经过点B时,将B(3,1)代入直线y=x+b中,可得+b=1,解得b=-;
直线y=x+b经过点A时:将A(1,1)代入直线y=x+b中,可得+b=1,解得b=;
直线y=x+b经过点C时:将C(2,2)代入直线y=x+b中,可得1+b=2,解得b=1.
故b的取值范围是-≤b≤1.
故选B.
考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
8、D
【解析】
根据题意可以写出存款总金额y(元)与时间x(月)之间的函数关系式,从而可以解答本题.
【详解】
解:由题意可得,
y=200+10x,
故选:D.
本题考查函数关系式,解答本题的关键是明确题意,写出函数关系式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据前5个数的平均数为m,可得这5个数的总和,加上第6个数0,利用平均数的计算公式计算可得答案.
【详解】
解:∵
∴
∴
∴这六个数的平均数
此题主要考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是判断出:.
10、1
【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出∠ADE的度数.
【详解】
∵D,E分别为AB,AC的中点,
∴DE是三角形的中位线,
∴DE∥BC,
∴∠ADE=∠B=1°,
故答案为1.
本题考查了三角形中位线的性质以及平行线的性质.
11、8 .
【解析】
观察图形我们可以得出x和y的关系式为:是x≥1时关系式为y=x+5,当x<1是y=−x+5,然后将x=-2代入y=−x+5,求出y值即a值,再把a值代入关系式即可求出结果.
【详解】
当x=-2时,
∵x=−26的函数关系式,求出y的值即可.
【详解】
解:(1)当时,设,
时,,,
,
当时,与的函数关系式为,
当时,设,
时,,,
,
当时, 与的函数关系式为y=6x-27;
(2)当时,,
该户11月份水费是元.
故答案为:(1)y=6x-27;(2)元.
主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
题号
一
二
三
四
五
总分
得分
评委
评委1
评委2
评委3
评委4
评委5
评委6
评委7
打分
9.2
9.4
9.3
9.4
9.1
9.3
9.4
A款手机
B款手机
进货价格(元)
1100
1400
销售价格(元)
今年的销售价格
2000
月份
用水量()
收费(元)
相关试卷
这是一份2025届唐山市重点中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届贺州市重点中学九上数学开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届甘孜市重点中学数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。