年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    湖南省武汉武昌区五校联考2025届数学九年级第一学期开学综合测试试题【含答案】

    湖南省武汉武昌区五校联考2025届数学九年级第一学期开学综合测试试题【含答案】第1页
    湖南省武汉武昌区五校联考2025届数学九年级第一学期开学综合测试试题【含答案】第2页
    湖南省武汉武昌区五校联考2025届数学九年级第一学期开学综合测试试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省武汉武昌区五校联考2025届数学九年级第一学期开学综合测试试题【含答案】

    展开

    这是一份湖南省武汉武昌区五校联考2025届数学九年级第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是( )
    A.B.C.D.
    2、(4分)将直线向右平移2个单位长度,可得直线的解析式为( )
    A.B.C.D.
    3、(4分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
    A.,B.,
    C.,D.,
    4、(4分)下列多项式中,能用平方差公式因式分解的是( )
    A.B.C.D.
    5、(4分)设a= ,b= ,c=,则a,b,c的大小关系是( )
    A.b>c>a B.b>a>c C.c>a>b D.a>c>b
    6、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
    A.50,20B.50,30C.50,50D.1,50
    7、(4分)下列式子是分式的是( ).
    A.B.C.D.
    8、(4分)无理数在两个整数之间,下列结论正确的是( )
    A.2~3之间B.3~4之间C.4~5之间D.5~6之间
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.
    10、(4分)已知直角三角形的两条边为5和12,则第三条边长为__________.
    11、(4分)如图,在单位为1的方格纸上,……,都是斜边在轴上,斜边长分别为2,4,6……的等腰直角三角形,若的顶点坐标分别为,则依图中所示规律,的坐标为__________.
    12、(4分)已知点P(-2,1),则点P关于x轴对称的点的坐标是__.
    13、(4分)在平面直角坐标系中,四边形是菱形。若点A的坐标是,点的坐标是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,将线段平移至,使点与点对应,点与点对应,连接、.
    (1)填空:与的位置关系为 ,与的位置关系为 .
    (2)如图2,若、为射线上的点,,平分交直线于,且,求的度数.
    15、(8分)我市某企业安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品,根据市场需求和生产经验,甲产品每件可获利元,乙产品每件可获利元,而实际生产中,生产乙产品需要额外支出一定的费用,经过核算,每生产件乙产品,当天平均每件获利减少元,设每天安排人生产乙产品.
    根据信息填表:
    若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
    16、(8分)己知反比例函数(常数,)
    (1)若点在这个函数的图像上,求的值;
    (2)若这个函数图像的每一支上,都随的增大而增大,求的取值范围;
    (3)若,试写出当时的取值范围.
    17、(10分)已知:在平面直角坐标系中有两条直线y=﹣1x+3和y=3x﹣1.
    (1)确定这两条直线交点所在的象限,并说明理由;
    (1)求两直线与坐标轴正半轴围成的四边形的面积.
    18、(10分)善于思考的小鑫同学,在一次数学活动中,将一副直角三角板如图放置,,,在同一直线上,且,,,,量得,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知反比例函数,当时,y的取值范围是________.
    20、(4分)点P(m-1,2m+3)关于y轴对称的点在第一象限,则m的取值范围是_______.
    21、(4分)如图,经过平移后得到,下列说法错误的是( )
    A.B.
    C.D.
    22、(4分)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.
    23、(4分)若多项式x2+mx+是一个多项式的平方,则m的值为_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在面积都相等的所有三角形中,当其中一个三角形的一边长为时,这条边上的高为.
    (1)①求关于的函数表达式;
    ②当时,求的取值范围;
    (2)小李说其中有一个三角形的一边与这边上的高之和为小赵说有一个三角形的一边与这边上的高之和为.你认为小李和小赵的说法对吗?为什么?
    25、(10分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.
    (1)求点C的坐标;
    (2)求证:△OAB是直角三角形.
    26、(12分)如图,在平面直角坐标系中,正比例函数与函数的图象相交于点,轴于点B.平移直线,使其经过点B,得到直线l,求直线l所对应的函数表达式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据等腰三角形的性质得到根据垂直的性质得到
    根据等量代换得到又即可得到
    根据同角的余角相等即可得到.
    【详解】
    ,

    ,

    从而
    是等腰三角形,



    故选:B.
    考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.
    2、B
    【解析】
    平移时的值不变,只有发生变化,然后根据平移规律求解即可.
    【详解】
    解:直线向右平移2个长度单位,则平移后所得的函数解析式是:,即.
    故选:B.
    本题考查一次函数图像的平移.平移后解析式有这样一个规律“左加右减,上加下减”.
    3、B
    【解析】
    根据平行四边形的判定方法,对每个选项进行筛选可得答案.
    【详解】
    A、∵OA=OC,OB=OD,
    ∴四边形ABCD是平行四边形,故A选项不符合题意;
    B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;
    C、∵AD//BC,AD=BC,
    ∴四边形ABCD是平行四边形,故C选项不符合题意;
    D、∵AB∥CD,
    ∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,
    又∵∠BAD=∠BCD,
    ∴∠ABC=∠ADC,
    ∵∠BAD=∠BCD,∠ABC=∠ADC,
    ∴四边形ABCD是平行四边形,故D选项不符合题意,
    故选B.
    本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.
    平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
    4、A
    【解析】
    根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.
    【详解】
    解:A、-m2与n2符号相反,能运用平方差公式,故本选项正确;
    B、有三项,不能运用平方差公式,故本选项错误;
    C、m2与n2符号相同,不能运用平方差公式,故本选项错误;
    D、-a2与-b2符号相同,不能运用平方差公式,故本选项错误.
    故选:A.
    本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.
    5、B
    【解析】
    先把a、b化简,然后计算b-a,b-c,a-c的值即可得出结论.
    【详解】
    解:a==,b= ==.
    由b-a==>0,∴b>a,由b-c==>0,∴b>c,∴b最大.
    又∵a-c==>0,∴a>c,故b>a>c.
    故选B.
    本题考查了无理数比较大小以及二次根式的性质.化简a、b是解题的关键.
    6、C
    【解析】
    根据众数和中位数的定义进行计算即可.
    【详解】
    众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
    将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
    故选:C.
    本题考查众数和中位数,明确众数和中位数的概念是关键.
    7、B
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    A、的分母中不含有字母,因此是整式,而不是分式.故本选项错误;
    B、分母中含有字母,因此是分式.故本选项正确;
    C、分母没有字母是整式,故本选项错误;
    D、分母中没有字母,故本选项错误;
    故选B.
    本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.
    8、B
    【解析】
    先看13位于哪两个相邻的整数的平方之间,再将不等式的两边同时开方即可得出答案.
    【详解】

    ∴,
    故选B.
    本题考查估算无理数的大小,平方根,本题的解题关键是掌握“夹逼法”估算无理数大小的方法.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(n≥1的整数),直接利用已知数据得出数字变化规律,进而得出答案.
    【详解】
    解:∵①,
    ②,
    ③,
    ……
    ∴第n个式子为:,
    ∴第6个等式为:
    故答案为:.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    10、1或
    【解析】
    因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.
    【详解】
    解:①当12为斜边时,则第三边==;
    ②当12是直角边时,第三边==1.
    故答案为:1或.
    本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.
    11、
    【解析】
    根据A3,A5,A7,A9等点的坐标,可以找到角标为奇数点都在x轴上,且正负半轴的点角标以4为周期,横坐标相差相同,从而得到结果.
    【详解】
    解:∵A3是第一与第二个等腰直角三角形的公共点,
    A5(4,0)是第二与第三个等腰直角三角形的公共点,
    A7(-2,0)是第三与第四个等腰直角三角形的公共点,
    A9(6,0)是第四与第五个等腰直角三角形的公共点,
    A11(-4,0)是第五与第六个等腰直角三角形的公共点,
    2019=1009+1
    ∴是第1009个与第1010个等腰直角三角形的公共点,
    ∵A3,A7(-2,0),A11(-4,0)
    2019=505×4-1
    ∴在x轴负半轴…,
    ∴的横坐标为(505-1)×(-2)=-1008
    ∴(-1008,0)
    本题考查的是规律,熟练掌握三角形的性质是解题的关键.
    12、 (-2,-1)
    【解析】
    根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.
    【详解】
    点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),
    故答案是:(﹣2,﹣1).
    考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.
    13、
    【解析】
    作AD⊥y轴于点D,由勾股定理求出OA的长,结合四边形是菱形可求出点C的坐标.
    【详解】
    作AD⊥y轴于点D.
    ∵点A的坐标是,
    ∴AD=1,OD=,
    ∴,
    ∵四边形是菱形,
    ∴AC=OA=2,
    ∴CD=1+2=3,
    ∴C(3, ).
    故答案为:C(3, )
    本题考查了菱形的性质,勾股定理以及图形与坐标,根据勾股定理求出OA的长是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2)120°
    【解析】
    (1)根据平移的性质,即可判定;
    (2)根据平行和角平分线的性质进行等角转换,即可得解.
    【详解】
    (1)由平移的性质,得
    ,AB=CD
    ∴四边形ABCD为平行四边形

    (2)∵



    ∵平分







    此题主要考查平移的性质、平行四边形的判定与性质以及角平分线的性质,熟练掌握,即可解题.
    15、(1)2(65−x),120−2x;(2)该企业每天生产甲、乙产品可获得总利润是1元.
    【解析】
    (1)设每天安排x人生产乙产品,则每天安排(65−x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120−2x)元,每天可生产2(65−x)件甲产品,此问得解;
    (2)由总利润=每件产品的利润×生产数量,结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值得到x值,然后再计算总利润即可.
    【详解】
    解:(1)设每天安排x人生产乙产品,则每天安排(65−x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120−2x)元,每天可生产2(65−x)件甲产品.
    填表如下:
    (2)依题意,得:15×2(65−x)−(120−2x)•x=650,
    整理得:x2−75x+650=0
    解得:x1=10,x2=65(不合题意,舍去),
    ∴15×2(65−x)+(120−2x)•x=1.
    答:该企业每天生产甲、乙产品可获得总利润是1元.
    本题考查了一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.
    16、(1);(2);(3)
    【解析】
    (1)把点代入函数即可求解;
    (2)根据这个函数图像的每一支上,都随的增大而增大,求出k即可;
    (3)当,求出x的范围即可;
    【详解】
    (1)把点代入函数,得2=
    得k=4;
    (2)∵这个函数图像的每一支上,都随的增大而增大,求出k即可;
    ∴k-2<0

    (3)当,

    ∴-3≤≤-2

    本题考查的是的反比例函数,熟练掌握反比例函数的性质是解题的关键.
    17、 (1)两直线交点坐标为(1,1),在第一象限;(1).
    【解析】
    (1)联立两直线解析式成方程组,解方程组即可求出交点坐标,进而即可得出交点所在的象限;
    (1)令直线y=﹣1x+3与x、y轴分别交于点A、B,直线y=3x﹣1与x、y轴分别交于点C、D,两直线交点为E,由直线AB、CD的解析式即可求出点A、B、C的坐标,利用分割图形求面积法结合三角形的面积公式即可求出两直线与坐标轴正半轴围成的四边形的面积.
    【详解】
    (1)联立两直线解析式得:,
    解得:,
    ∴两直线交点坐标为(1,1),在第一象限.
    (1)令直线y=﹣1x+3与x、y轴分别交于点A、B,直线y=3x﹣1与x、y轴分别交于点C、D,两直线交点为E,如图所示.
    令y=﹣1x+3中x=0,则y=3,
    ∴B(0,3);
    令y=﹣1x+3中y=0,则x=,
    ∴A(,0).
    令y=3x﹣1中y=0,则x=,
    ∴C(,0).
    ∵E(1,1),
    ∴S四边形OCEB=S△AOB﹣S△ACE=OA•OB﹣AC•yE=××3﹣×(﹣)×1=.
    此题考查两条直线相交或平行问题,联立直线解析式成方程组求出交点
    18、
    【解析】
    过F作FH垂直于AB,得到∠FHB为直角,进而求出∠EFD的度数为30°,利用30°角所对的直角边等于斜边的一半求出EF的长,再利用勾股定理求出DF的长,由EF与AD平行,得到内错角相等,确定出∠FDA为30°,再利用30°角所对的直角边等于斜边的一半求出FH的长,进而利用勾股定理求出DH的长,由DH-BH求出BD的长即可.
    【详解】
    解:过点F作FH⊥AB于点H,
    ∴∠FHB=90°,
    ∵∠EDF=90°,∠E=60°,
    ∴∠EFD=90°-60°=30°,
    ∴EF=2DE=24,
    ∴,
    ∵EF∥AD,
    ∴∠FDA=∠DFE=30°,
    ∴,
    ∴,
    ∵△ABC为等腰直角三角形,
    ∴∠ABC=45°,
    ∴∠HFB=90°-45°=45°,
    ∴∠ABC=∠HFB,
    ∴,
    则BD=DH-BH=.
    此题考查了勾股定理,以及平行线的性质,熟练掌握勾股定理是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.
    【详解】
    ∵k=1>0,
    ∴在每个象限内y随x的增大而减小,
    又∵当x=1时,y=1,
    当x=2时,y=5,
    ∴当1<x<2时,5<y<1.
    故答案为.
    本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.
    20、-1.5<m<1
    【解析】
    首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式组,然后求解不等式组即可得出m的取值范围.
    【详解】
    解:∵P(m-1,2m+3)关于y轴对称的点在第一象限,
    ∴P点在第二象限,
    解得:-1.5<m<1,
    故答案为:-1.5<m<1.
    本题考查关于y轴对称的点的坐标特点,各象限内点的坐标符号,解一元一次不等式组.解答本题的关键是判断出P点所在象限并据此列出不等式组.
    21、D
    【解析】
    根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.
    【详解】
    A、AB∥DE,正确;
    B、,正确;
    C、AD=BE,正确;
    D、,故错误,
    故选D.
    本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.
    22、15或16或1
    【解析】
    试题分析:根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为1,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或1.
    故答案为15,16或1.
    考点:多边形内角和与外角和.
    23、±.
    【解析】
    根据完全平方公式的结构特征即可求出答案.
    【详解】
    解:∵x2+mx+=x2+mx+()2,
    ∴mx=±2××x,
    解得m=±.
    故答案为±.
    本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①;②;(2)小赵的说法正确,见解析
    【解析】
    (1)①直接利用三角形面积求法进而得出y与x之间的关系;
    ②直接利用x≥3得出y的取值范围;
    (2)直接利用x+y的值结合根的判别式得出答案.
    【详解】
    解:
    为底,为高,


    ②当x=3时,y=2,
    ∴当x≥3时,y的取值范围为:0<y≤2;
    小赵的说法正确.
    理由如下:小李:
    整理得,x2-4x+6=0,
    ∵△=42-4×6<0,
    ∴一个三角形的一边与这边上的高之和不可能是4;
    小赵:


    小赵的说法正确.
    此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.
    25、(1)(0,);(2)见解析
    【解析】
    (1)利用待定系数法求出直线AB的解析式,求出点C的坐标;
    (2)根据勾股定理分别求出OA2、OB2、AB2,根据勾股定理的逆定理判断即可.
    【详解】
    (1)解:设直线AB的解析式为:y=kx+b,
    点A(2,1),B(﹣2,4),
    则,
    解得,,
    ∴设直线AB的解析式为:y=﹣x+,
    ∴点C的坐标为(0,);
    (2)证明:∵点A(2,1),B(﹣2,4),
    ∴OA2=22+12=5,OB2=22+42=20,AB2=(4-1)2+(-2-2)2=25,
    则OA2+OB2=AB2,
    ∴△OAB是直角三角形.
    本题考查的是待定系数法求一次函数解析式、勾股定理的逆定理,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.
    26、.
    【解析】
    求出A点的坐标,求出B点的坐标,再用待定系数法求出正比例函数的解析式,最后求出一次函数的解析式即可.
    【详解】
    解:将代入中,,∴
    ∵轴于点B,.
    将代入中,,解得
    ∴设直线l所对应的函数表达式为.
    将代入上式,得 ,解得.
    ∴直线l所对应的函数表达式是.
    故答案为:.
    本题考查平移的性质,反比例函数图象上点的坐标特征,用待定系数法求函数的解析式等知识点,能用待定系数法求出函数的解析式是解题的关键.
    题号





    总分
    得分
    产品种类
    每天工人数(人)
    每天产量(件)
    每件产品可获利润(元)




    产品种类
    每天工人数(人)
    每天产量(件)
    每件产品可获利润(元)

    2(65−x)

    120−2x

    相关试卷

    湖北省武汉武昌区四校联考2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份湖北省武汉武昌区四校联考2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省武汉武昌区四校联考数学九上开学联考试题【含答案】:

    这是一份2024年湖北省武汉武昌区四校联考数学九上开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省武汉武昌区五校联考2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案:

    这是一份湖南省武汉武昌区五校联考2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,方程x2=2x的解是,定义新运算等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map