![湖南省湘西土家族苗族自治州凤凰县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16281655/0-1729640855554/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省湘西土家族苗族自治州凤凰县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16281655/0-1729640855580/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省湘西土家族苗族自治州凤凰县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16281655/0-1729640855608/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖南省湘西土家族苗族自治州凤凰县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】
展开
这是一份湖南省湘西土家族苗族自治州凤凰县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若菱形的周长为8,高为1,则菱形两邻角的度数比为( )
A.3∶1B.4∶1C.5∶1D.6∶1
2、(4分)设,,则与的大小关系是( )
A.B.C.D.
3、(4分)已知一元二次方程有一个根为2,则另一根为
A.2B.3C.4D.8
4、(4分)﹣2018的倒数是( )
A.2018B.C.﹣2018D.
5、(4分)如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )
A.55°B.60°C.65°D.70°
6、(4分)若分式有意义,则实数的取值范围是( )
A.x=2B.x=-2C.x≠2D.x≠-2
7、(4分)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( )
A.B.C.D.
8、(4分)据《南昌晚报》2019 年 4 月 28 日报道,“五一”期间南昌天气预报气温如下:
则“五一”期间南昌天气预报气温日温差最大的时间是( )
A.4 月 29 日B.4 月 30 日C.5 月 1 日D.5 月 3 日
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形纸片ABCD中,,.若,则该纸片的面积为________ .
10、(4分)如图,△ABC 中,AB=BC=12cm,D、E、F 分别是 BC、AC、AB 边上的中点,则四边形 BDEF 的周长是__________cm.
11、(4分)已知一次函数,当时,对应的函数的取值范围是,的值为__.
12、(4分)如图,在中,,平分,点为中点,则_____.
13、(4分)若,则=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.
(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,
(1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.
15、(8分)计算
(1)()2﹣(﹣)()
(2)()﹣(﹣)
16、(8分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.
(1)请直接写出直线AB的函数解析式: ;
(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.
17、(10分)已知函数,
(1)在平面直角坐标系中画出函数图象;
(2)函数图象与轴交于点,与轴交于点,已知是图象上一个动点,若的面积为,求点坐标;
(3)已知直线与该函数图象有两个交点,求的取值范围.
18、(10分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天盈利1600元,可能吗?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一元二次方程x2-6x+a =0有一个根为2,则另一根为_______.
20、(4分)若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____
21、(4分)若一个等腰三角形的顶角等于70°,则它的底角等于________度,
22、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为____;若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.
23、(4分)已知正方形,以为顶角,边为腰作等腰,连接,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)下表给出三种上宽带网的收费方式.
设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;
填空:当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
25、(10分)(1)分解因式:x(x﹣y)﹣y(y﹣x)
(2)解不等式组,并把它的解集在数轴上表示出来.
26、(12分)如图1,将线段平移至,使点与点对应,点与点对应,连接、.
(1)填空:与的位置关系为 ,与的位置关系为 .
(2)如图2,若、为射线上的点,,平分交直线于,且,求的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.
【详解】
解:如图所示:
∵四边形ABCD是菱形,菱形的周长为8,
∴AB=BC=CD=DA=2,∠DAB+∠B=180°,
∵AE=1,AE⊥BC,
∴AE=AB,
∴∠B=30°,
∴∠DAB=150°,
∴∠DAB:∠B=5:1;
故选:C.
本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.
2、B
【解析】
通过作差法来判断A与B的大小,即可得解.
【详解】
根据已知条件,得
∴
故答案为B.
此题主要考查求差比较大小,熟练运用,即可解题.
3、C
【解析】
试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1.
考点:根与系数的关系.
4、D
【解析】
根据倒数的概念解答即可.
【详解】
﹣2018的倒数是:﹣.
故选D.
本题考查了倒数的知识点,解题的关键是掌握互为倒数的两个数的乘积为1.
5、D
【解析】
根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.
【详解】
∵EF∥MN,∠1=40°,∴∠1=∠3=40°.
∵∠A=30°,∴∠2=∠A+∠3=70°.
故选D.
本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.
6、D
【解析】
根据分式有意义分母不能为零即可解答.
【详解】
∵分式有意义,
∴x+2≠0,
∴x≠-2.
故选:D.
本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.
7、D
【解析】
根据图像分析不同时间段的水面上升速度,进而可得出答案.
【详解】
已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.
能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.
8、C
【解析】
根据极差的公式:极差=最大值-最小值.找出所求数据中最大的值,最小值,再代入公式求值即可.
【详解】
4 月 29 日的温差:22-18=4
4 月 30 日的温差:24-18=6
5 月 1 日的温差:27-19=8
5 月 2 日的温差:22-18=4
5 月 3 日的温差:24-19=5
故5月1日温差最大,为8
故选:C
本题考查了极差,掌握极差公式: 极差=最大值-最小值是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、16
【解析】
本题可通过作辅助线进行解决,延长AB到E,使BE=DA,连接CE,AC,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解.
【详解】
解:如图,延长AB到E,使BE=DA,连接CE,AC,
∵∠CBE=∠BCA+∠CAB,
∠ADC=180°-∠DCA-∠DAC,
∵∠BCD=90°,∠BAD=90°,
∴∠BCA+∠CAB=90°+90°-∠DCA-∠DAC=180°-∠DCA-∠DAC,
∴∠CBE=∠ADC,
又∵BE=DA,CB=CD,
∴△CBE≌△CDA,
∴CE=CA,∠ECB=∠DCA,
∴∠ECA=90°,
∴三角形ACE是等腰直角三角形。
∵AE=AB+BE=AB+AD=8cm
∴S四边形ABCD=S△AEC=16
故答案为:16
本题考查了面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.
10、24
【解析】
根据中点的性质求出BF、BD,根据中位线的性质求出DE、FE,从而求出四边形BDEF的周长.
【详解】
∵D、E、F 分别是 BC、AC、AB 边上的中点,
∴,
,,
∵AB=BC=12cm
∴BF=DE=BD=BF=6cm
∴四边形BDEF的周长为24cm.
本题考查线段的中点、三角形中位线定理.解决本题的关键是利用三角形的中位线平行于第三边并且等于第三边的一半求出DE和FE.
11、4.
【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.
【详解】
当时,随的增大而减小,即一次函数为减函数,
当时,,当时,,
代入一次函数解析式得:,
解得,
故答案为:4.
本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.
12、1
【解析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.
【详解】
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.
本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
13、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)
【解析】
(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;
(1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几
个单位.
15、(1)4+6(2)5-
【解析】
(1)根据二次根式的运算法则计算即可.(2)根据二次根式的运算法则计算即可.
【详解】
(1)原式=2+4+6﹣(5﹣3)
=2+4+6﹣2
=4+6.
(2)原式=2﹣﹣ +3
=5﹣.
本题考查二次根式的计算,熟练掌握二次根式的运算法则是解题关键.
16、(1);(2)当t=4时,四边形BQPM是菱形.
【解析】
(1)由点A、B的坐标,利用待定系数法求得直线AB的函数解析式;
(2)当t=4时,求得BQ、OP的长度,结合勾股定理得到PQ=BQ;由相似三角形:△APM∽△AOB的对应边相等求得PM的长度,得到BQ=PM,所以该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知当t=4时,四边形BQPM是菱形.
【详解】
解:(1)设直线AB的解析式为:y=kx+b(k≠0).
把点A(1,0)、B(0,4)分别代入,得
解得.
故直线AB的函数解析式是:y=﹣x+1.
故答案是:y=﹣x+1.
(2)当t=4时,四边形BQPM是菱形.理由如下:
当t=4时,BQ=,则OQ=.
当t=4时,OP=,则AP=.
由勾股定理求得PQ=.
∵PM∥OB,
∴△APM∽△AOB,
∴,即,
解得PM=.
∴四边形BQPM是平行四边形,
∴当t=4时,四边形BQPM是菱形.
考查了一次函数综合题,熟练掌握待定系数法求一次函数解析式,菱形的判定与性质,勾股定理,相似三角形的判定与性质,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.
17、(1)图略;(2)或;(3)的取值范围是或.
【解析】
(1)去绝对值,化为常见的一次函数,画出图像即可;
(2)由的面积可先求出P点纵坐标y的值,再由函数解析式求出x值;
(3)当直线介于经过点A的直线与平行于直线时,其与函数图像有两个交点.
【详解】
解: ,所以函数图像如图所示
如图,作轴
或1
或
直线与轴的交点为
①当直线经过时,
②当直线平行于直线时,
的取值范围是或
本题考查了函数的图像,合理的将图像与一次函数相结合是解题的关键.
18、(1)每件衬衫应降价1元.(2)不可能,理由见解析
【解析】
(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.
(2)同样列出方程,若方程有实数根则可以,否则不可以.
【详解】
(1)设每件衬衫应降价x元.
根据题意,得 (40-x)(1+2x)=110
整理,得x2-30x+10=0
解得x1=10,x2=1.
∵“扩大销售量,减少库存”,
∴x1=10应略去,
∴x=1.
答:每件衬衫应降价1元.
(2)不可能.理由如下:
令y=(40-x)(1+2x),
当y=1600时,(40-x)(1+2x)=1600
整理得x2-30x+400=0
∵△=900-4×400<0,
方程无实数根.
∴商场平均每天不可能盈利1600元.
此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.
【详解】
设方程另一根为t,
根据题意得2+t=6,
解得t=1.
故答案为1.
此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.
20、1.2
【解析】分析: 先由平均数的公式计算出a的值,再根据方差的公式计算即可.
详解: ∵数据10,9,a,12,9的平均数是10,
∴(10+9+a+12+9)÷5=10,
解得:a=10,
∴这组数据的方差是15[(10−10) ² +(9−10) ² +(10−10) ² +(12−10) ² +(9−10) ²]=1.2.
故选B.
点睛: 本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
21、1
【解析】
根据等腰三角形的性质和三角形的内角和即可得到结论.
【详解】
解:一个等腰三角形的顶角等于,
它的底角,
故答案为:1.
本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
22、 (1,1) (-1,-1).
【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.
【详解】
∵菱形OABC的顶点O(0,0),B(2,2),得
∴D点坐标为(1,1).
∵每秒旋转45°,
∴第60秒旋转45°×60=2700°,
2700°÷360°=7.5周,即OD旋转了7周半,
∴菱形的对角线交点D的坐标为(-1,-1),
故答案为:(1,1);(-1,-1)
本题考查了旋转的性质及菱形的性质,利用旋转的性质得出OD旋转的周数是解题关键.
23、或
【解析】
分两种情况画图分析:点E在正方形内部和点E在正方形外部.设,再利用等腰三角形的性质以及三角形的内角和分别求解即可.
【详解】
解:如图1,设
如图2,设
,
故答案为:135°或45°.
本题考查了正方形的性质,等腰三角形的性质,分类讨论的数学思想,对点在正方形内部或外部进行讨论.解题关键是画出相应的图.
二、解答题(本大题共3个小题,共30分)
24、;;;不超过; 超过而不超过; 超过.
【解析】
(1)根据表格写出函数的解析式,注意分段表示函数的解析式.
(2)根据函数的解析数求解 的交点,进而可得最省钱的取值范围.
【详解】
解:
根据一次函数y=3x-65与y=40的交点即可得到A最省钱的时间;
解得
所以当不超过时,选择方式最省钱
同理可得计算出直线y=3x-140与y=100的交点即可得到最省钱
解得
所以当超过而不超过,选择方式B最省钱
根据前面两问可得当超过.选择方式C最省钱
本题主要考查一次函数的应用问题,关键在于求解最省钱的取值范围,着重在于求解交点坐标.
25、(1)(x﹣y)(x+y);(2)﹣2<x≤1
【解析】
分析:(1)根据提公因式法,可分解因式;
(2)根据解不等式,可得每个不等式的解集,根据不等式组的解集是不等式的公共部分,可得答案.
解:(1)原式=(x﹣y)(x+y);
(2)解不等式①1,得x>﹣2,
解不等式②,得x≤1,
把不等式①②在数轴上表示如图
,
不等式组的解集是﹣2<x≤1.
【点评】本题考查了因式分解,确定公因式(x﹣y)是解题关键.
26、(1),;(2)120°
【解析】
(1)根据平移的性质,即可判定;
(2)根据平行和角平分线的性质进行等角转换,即可得解.
【详解】
(1)由平移的性质,得
,AB=CD
∴四边形ABCD为平行四边形
∴
(2)∵
∴
∵
∴
∵平分
∴
∴
∵
∴
∵
∴
∴
此题主要考查平移的性质、平行四边形的判定与性质以及角平分线的性质,熟练掌握,即可解题.
题号
一
二
三
四
五
总分
得分
时间
4 月 29 日
4 月 30 日
5 月 1 日
5 月 2 日
5 月 3 日
最低气温
18℃
18℃
19℃
18℃
19℃
最高气温
22℃
24℃
27℃
22℃
24℃
收费方式
月使用费/元
包时上网时间/
超时费/(元/)
不限时
相关试卷
这是一份湖南省醴陵市2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省长沙市教科所数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省湘西土家族苗族自治州古丈县九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)