![湖北省麻城市张家畈镇中学2024年九上数学开学经典模拟试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16277051/0-1729560922573/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省麻城市张家畈镇中学2024年九上数学开学经典模拟试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16277051/0-1729560922639/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省麻城市张家畈镇中学2024年九上数学开学经典模拟试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16277051/0-1729560922672/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖北省麻城市张家畈镇中学2024年九上数学开学经典模拟试题【含答案】
展开
这是一份湖北省麻城市张家畈镇中学2024年九上数学开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:
请你根据表中数据选一人参加比赛,最合适的人选是( )
A.甲B.乙C.丙D.丁
2、(4分)4的平方根是( )
A.4B.2C.-2D.±2
3、(4分)一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=( )
A.60°B.70°C.80°D.90°
4、(4分)如图,在矩形ABCD中,AD=+8,点E在边AD上,连BE,BD平分∠EBC,则线段AE的长是( )
A.2B.3C.4D.5
5、(4分)若代数式有意义,则实数x的取值范围是( )
A.x=0B.x=3C.x≠0D.x≠3
6、(4分)如图,,,,则的度数为( )
A.B.C.D.
7、(4分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1B.C.-1D.+1
8、(4分)一个三角形的三边分别是6、8、10,则它的面积是( )
A.24B.48C.30D.60
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知:,则______.
10、(4分)Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.
11、(4分)已知实数a、b在数轴上的位置如图所示,则化简的结果为________
12、(4分)若一个三角形的三边长分别为5、12、13,则此三角形的面积为 .
13、(4分)_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,D、E分别是AB、AC的中点,延长DE至点F,使EF=DE,连接CF.
证明:四边形DBCF是平行四边形.
15、(8分)若关于的一元二次方程有实数根,.
(1)求实数的取值范围;
(2)设,求的最小值.
16、(8分)解不等式:
17、(10分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)如图1,求证:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的长度;
(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.
18、(10分)市教育局为了解本市中学生参加志愿者活动情况,随机拍查了某区部分八年级学生一学年来参加志愿者活动的次数,并用得到的数据绘制了如下两幅不完整的统计图.
(1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该区共有八年级学生人,请你估计“活动次数不少于次”的学生人数大约多少人.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
20、(4分)如图,在平行四边形中,度,,,则______.
21、(4分)如图,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC顶点A、C分别在ON、OM上,点D是AB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____.
22、(4分)在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么的取值范围是__________.
23、(4分)计算:__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.
(1)求证:四边形AMCN是平行四边形;
(2)若AC=BC=5,AB=6,求四边形AMCN的面积.
25、(10分)如图,在中,,从点为圆心,长为半径画弧交线段于点,以点为圆心长为半径画弧交线段于点,连结.
(1)若,求的度数:
(2)设.
①请用含的代数式表示与的长;
②与的长能同时是方程的根吗?说明理由.
26、(12分)在数学拓展课上,老师让同学们探讨特殊四边形的做法:
如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;
(1)你认为该作法正确吗?请说明理由.
(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据方差的意义求解可得.
【详解】
∵四人的平均成绩相同,而甲的方差最小,即甲的成绩最稳定,
∴最合适的人选是甲,
故选:A.
本题考查方差,解答本题的关键是明确题意,掌握方差的意义.
2、D
【解析】
∵,
∴4的平方根是,
故选D.
3、B
【解析】
∵六边形ABCDEF的内角和为:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,
∴∠GBC+∠C+∠CDG=720°-430°=290°,
∴∠G=360°-(∠GBC+∠C+∠CDG)=70°,
故选B.
4、B
【解析】
根据二次根式的性质得到AB,AD的长,再根据BD平分∠EBC与矩形的性质得到∠EBD=∠ADB,故BE=DE,再利用勾股定理进行求解.
【详解】
解:∵AD=+8,
∴AB=4,AD=8
∵BD平分∠EBC
∴∠EBD=∠DBC
∵AD∥BC
∴∠ADB=∠DBC
∴∠EBD=∠ADB
∴BE=DE
在Rt△ABE中,BE2=AE2+AB2,
∴(8﹣AE)2=AE2+16
∴AE=3
故选:B.
此题主要考查矩形的线段求解,解题的关键是熟知勾股定理的应用.
5、D
【解析】
分析:根据分式有意义的条件进行求解即可.
详解:由题意得,x﹣3≠0,
解得,x≠3,
故选D.
点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.
6、A
【解析】
由,易求,再根据,易求,于是根据进行计算即可.
【详解】
,,
,
又,,
,
,
.
故选:.
本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
7、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
8、A
【解析】
先根据勾股定理逆定理证明三角形是直角三角形,再利用面积法代入求解即可.
【详解】
∵,
∴三角形是直角三角形,
∴面积为:.
故选A.
本题考查勾股定理逆定理的应用,关键在于熟悉常用的勾股数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先根据二次根式有意义的条件和分式有意义的条件列出不等式,求出x的值,然后可得y的值,易求结果.
【详解】
解:由题意得:,
∴x=-2,
∴y=3,
∴,
故答案为:.
本题考查了二次根式和分式的性质,根据他们各自的性质求出x,y的值是解题关键.
10、1
【解析】
根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.
【详解】
解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),
∴AB=2,
∴BC==4,
∴点C的坐标为(3,4),
当y=4时,4=﹣x﹣3,得x=﹣7,
∴C′(﹣7,4),
∴CC′=10,
∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,
故答案为:1.
此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.
11、0
【解析】
根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.
【详解】
解:由图可知:a<0,b>0, b-a>0,
∴
故填:0
本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.
12、30
【解析】
解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.
解:∵52+122=132,
∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,
∴此三角形的面积为×5×12=30
13、
【解析】
原式化为最简二次根式,合并即可得到结果.
【详解】
解:原式=+2=3.
故答案为3
此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
分析:根据中位线的性质得出,结合DE=EF,从而得出DF和BC平行且相等,从而得出答案.
详解:证明:∵ D、E分别是AB、AC的中点, ∴ DE=BC, DE∥BC,
又EF=DE, ∴ DF=DE+EF=BC, ∴ 四边形DBCF是平行四边形.
点睛:本题主要考查的是三角形中位线的性质以及平行四边形的判定定理,属于中等难度题型.了解中位线的性质是解决这个问题的关键.
15、(1)k≤−2;(2)t的最小值为−1.
【解析】
(1)由一元二次方程存在两实根,可得△≥0,进而求得k的取值范围;
(2)将α+β化为关于k的表达式,根据k的取值范围得出t的取值范围,即可求得的最小值.
【详解】
(1)∵一元二次方程x2−2(2−k)x+k2+12=0有实数根a,β,
∴△≥0,即:1(2−k)2−1(k2+12)≥0,解得:k≤−2;
(2)由根与系数的关系得:a+β=−[−2(2−k)]=1−2k,
∴==−2,
∵k≤−2,
∴−2≤
相关试卷
这是一份湖北省黄冈市麻城市顺河镇2024年数学九上开学复习检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省麻城市张家畈镇中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了将二次函数化成的形式为等内容,欢迎下载使用。
这是一份2023-2024学年湖北省麻城市张家畈镇中学数学九上期末检测模拟试题含答案,共7页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。