河北省唐山市滦南县2024年九上数学开学经典试题【含答案】
展开
这是一份河北省唐山市滦南县2024年九上数学开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式无意义,则( )
A.B.C.D.
2、(4分)直角三角形的两直角边长分别为6和8,则斜边上的中线长是( )
A.10B.2.5C.5D.8
3、(4分)下列各式计算正确的是
A.B.C.D.
4、(4分)八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是( )
A.列表法B.图象法
C.解析式法D.以上三种方法均可
5、(4分)下列命题中,有几个真命题 ( )
①同位角相等 ②直角三角形的两个锐角互余
③平行四边形的对角线互相平分且相等 ④对顶角相等
A.1个B.2个C.3个D.4个
6、(4分)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( )
A.y=10x+30B.y=40xC.y=10+30xD.y=20x
7、(4分)如图,菱形ABCD的对角线AC、BD交于点O,E、F分别是AD、CD边的中点,连接EF,若,,则菱形ABCD的面积是
A.24B.20C.12D.6
8、(4分)使代数式有意义的x的取值范围是( )
A.x>2B.x>﹣2C.x≥2D.x≥﹣2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图是一块地的平面示意图,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,则这块地的面积为_____m2.
10、(4分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是________.
11、(4分)二次根式中字母 a 的取值范围是______.
12、(4分)已知不等式的解集为﹣1<x<2,则( a +1)(b﹣1)的值为____.
13、(4分)将菱形以点为中心,按顺时针方向分别旋转,,后形成如图所示的图形,若,,则图中阴影部分的面积为__.
三、解答题(本大题共5个小题,共48分)
14、(12分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.
收集数据如下:
七年级:
八年级:
整理数据如下:
分析数据如下:
根据以上信息,回答下列问题:
(1)a=______,b=______;
(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.
15、(8分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.
16、(8分)如图1,直线与轴交于点,与轴交于点,.
(1)求两点的坐标;
(2)如图2,以为边,在第一象限内画出正方形,并求直线的解析式.
17、(10分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.
18、(10分)计算:
(1); (2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.
20、(4分)已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.
21、(4分)一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.
22、(4分)两条对角线______的四边形是平行四边形.
23、(4分)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为 ________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某楼盘要对外销售该楼盘共23层,销售价格如下:第八层楼房售价为4000元米,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,
请写出售价元米与楼层x取整数之间的函数关系式.
已知该楼盘每套楼房面积均为100米,若购买者一次性付清所有房款,开发商有两种优惠方案:
方案一:降价,另外每套楼房总价再减a元;
方案二:降价.
老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
25、(10分)小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况、他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?
26、(12分)某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,
(1)写出药物燃烧前后,y与x之间的函数表达式;
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据分母等于零列式求解即可.
【详解】
由题意得
x-1=0,
∴.
故选D.
本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
2、C
【解析】
已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.
【详解】
已知直角三角形的两直角边为6、8,
则斜边长为=10,
故斜边的中线长为×10=5,
故选:C.
考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.
3、B
【解析】
利用二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的乘法法则对C进行判断;根据算术平方根的定义对D进行判断.
【详解】
解:A、3与不能合并,所以A选项错误;
B、原式==4,所以B选项正确;
C、原式==,所以C选项错误;
D、原式=2,所以D选项错误.
故选B.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
4、B
【解析】
列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
【详解】
解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,
故选:B.
本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.
5、B
【解析】
解:①只有在两直线平行的前提下,同位角才相等,错误; ②直角三角形的两个锐角互余,正确;③平行四边形的对角线互相平分,不一定相等,错误; ④对顶角相等,正确
故选B
6、A
【解析】
根据师生的总费用,可得函数关系式.
【详解】
解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,
故选A.
本题考查了函数关系式,师生的总费用的等量关系是解题关键.
7、A
【解析】
根据EF是的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.
【详解】
解:、F分别是AD,CD边上的中点,即EF是的中位线,
,
则.
故选:A.
本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.
8、D
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
由题意得,x+2≥0,
解得x≥﹣2,
故选D.
本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题解析:连接AC,
∵AD=4m,CD=3m,∠ADC=90°,
∴AC===5,
∵AB=13m,BC=12m,
∴AB2=BC2+CD2,即△ABC为直角三角形,
∴这块地的面积为S△ABC-S△ACD=AC•BC-AD•CD=×5×12-×3×4=1.
10、
【解析】
绿球的个数除以球的总数即为所求的概率.
【详解】
解:∵一个盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,
∴小明摸出一个球是绿球的概率是:.
故答案为:
此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
11、.
【解析】
运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.
【详解】
解:由题意得2a+5≥0,解得:.
故答案为.
本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.
12、-12
【解析】
先求出每个不等式的解集,求出不等式组的解集,根据已知不等式组的解集得出方程,求出a、b的值,代入即可求出答案.
【详解】
解:∵解不等式2x-a<1得:x<,
解不等式x-2b>3得:x>2b+3,
∴不等式组的解集是2b+3<x<a,
∵不等式组的解集为-1<x<2,
∴2b+3=-1,,
∴b=-2,a=3,
∴(a+1)(b-1)=(3+1)×(-2-1)=-12,
故答案为:-12.
本题考查了一元一次方程,一元一次不等式组的应用,解此题的关键事实能得出关于a、b的方程,题目比较好,难度适中.
13、
【解析】
由菱形性质可得AO,BD的长,根据.可求,则可求阴影部分面积.
【详解】
连接,交于点,,
四边形是菱形,
,,,,且
,
将菱形以点为中心按顺时针方向分别旋转,,后形成的图形
,
故答案为:
本题考查了:图形旋转的性质、菱形的性质、直角三角形的性质,掌握菱形性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)8,88.1; (2)你认为 八 年级知识竞赛的总体成绩较好,理由1:理由2:见解析;或者你认为 七 年级知识竞赛的总体成绩较好,理由1: 理由2: 见解析; (答案不唯一,合理即可);(3)460.
【解析】
(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,
(2)从中位数、众数、方差进行分析,调查结论,
(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.
【详解】
(1) a=20-1-10-1=8,b=(88+89)÷2=88.1
故答案为:8,88.1.
(2)你认为 八 年级知识竞赛的总体成绩较好
理由1:八年级成绩的中位数较高;
理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定.
或者
你认为 七 年级知识竞赛的总体成绩较好,
理由1:七年级的平均成绩较高;
理由2:低分段人数较少。 (答案不唯一,合理即可)
(3) 七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,
180+280=460人.
考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.
15、 (1) x1=,x2=;(2) x1=2,x2=−.
【解析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.
【详解】
(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.
本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.
16、 (1);(2)直线的解析式为.
【解析】
(1)由题意A(0,-2k),B(2,0),再根据,构建方程即可解决问题;
(2)如图2中,作CH⊥x轴于H.利用全等三角形的性质求出点C坐标,再利用待定系数法求出直线CD的解析式即可
【详解】
(1)∵直线与轴交于点,与轴交于点,
∴,
∵,
∴,
∴,
∵,
∴,
∴;
(2)如图,作轴于点,
∵四边形是正方形,
∴,
∴,
∴,
∴,
∴,
∴,
∵,
∴设直线的解析式为,把代入,得,
∴直线的解析式为.
本题考查了一次函数的应用、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
17、
【解析】
试题分析:先根据菱形对角线互相垂直平分求得OA、OB的值,根据勾股定理求得AB的值,由菱形面积公式的两种求法列式可以求得高DH的长.
试题解析:
解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,
∴AC⊥BD,OA= AC=4cm,OB= BD=3cm,
∴Rt△AOB中,AB===5,
∵DH⊥AB,
∵菱形ABCD的面积S= AC•BD=AB•DH,
×6×8=5DH,
∴DH=.
点睛:本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.
18、(1)6(2)9
【解析】
(1)先计算算术平方根,零指数幂,然后依次计算即可
(2)先利用完全平方公式进行计算,再把二次根式化为最简,进行计算即可
【详解】
(1)3+2+1=6
(3)3+4+4 -4+2=9
此题考查二次根式的混合运算,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.
解:根据题意得:
y=,
整理得:;
则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;
故答案为y=.
考点:分段函数.
20、
【解析】
根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.
【详解】
解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,
∴△=(-2a)2-4×1×1=0,
解得:a=±1.
故答案为:±1.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.
21、
【解析】
∵一次函数y=−2x+m的图象经过点P(−2,3),
∴3=4+m,
解得m=−1,
∴y=−2x−1,
∵当x=0时,y=−1,
∴与y轴交点B(0,−1),
∵当y=0时,x=−,
∴与x轴交点A(−,0),
∴△AOB的面积:×1×=.
故答案为.
点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.
22、互相平分
【解析】
由“两条对角线互相平分的四边形是平行四边形”,即可得出结论.
【详解】
两条对角线互相平分的四边形是平行四边形;
故答案为:互相平分.
本题考查了平行四边形的判定;熟记“两条对角线互相平分的四边形是平行四边形”是解题的关键.
23、x>﹣1
【解析】
解:3⊕x<13,
3(3-x)+1<13,
解得:x>-1.
故答案为:x>﹣1
本题考查一元一次不等式的应用,正确理解题意进行计算是本题的解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析.
【解析】
根据题意分别求出当时,每平方米的售价应为元,当时,每平方米的售价应为元;
根据购买方案一、二求出实交房款的关系式,然后分情况讨论即可确定那种方案合算.
【详解】
当时,每平方米的售价应为:
元平方米
当时,每平方米的售价应为:
元平方米.
;
第十六层楼房的每平方米的价格为:元平方米,
按照方案一所交房款为:元,
按照方案二所交房款为:元,
当时,即,
解得:,
当时,即,
解得:.
当时,即,
解得:,
当时,方案二合算;当时,方案一合算当时,方案一与方案二一样.
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
25、(1)1200≤x<1400,1400≤x<1600;18人;5%;7.5%.(2)详见解析;(3)大约有338户.
【解析】
(1)、(2)比较简单,读图表以及频数分布直方图易得出答案.
(3)根据(1)、(2)的答案可以分析求解.求出各个分布段的数据即可.
【详解】
(1)根据题意可得出分布是:1200≤x<1400,1400≤x<1600;
1000≤x<1200中百分比占45%,所以40×0.45=18人;
1600≤x<1800中人数有2人,故占=0.05,故百分比为5%.
故剩下1400≤x<1600中人数有3,占7.5%.
(2)
(3)大于1000而不足1600的占75%,故450×0.75=337.5≈338户.
答:居民小区家庭属于中等收入的大约有338户.
本题的难度一般,主要考查的是频率直方图以及考生探究图表的能力.
26、(1)药物燃烧时y关于x的函数关系式为:;药物燃烧后y关于x的函数关系式为:;(2)至少需要15分钟后学生方能回到教室;(3)此次消毒有效.
【解析】
(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可;药物燃烧后,设出y与x之间的解析式,把点(6,4)代入即可;
(2)把y=1.6代入反比例函数解析式,求出相应的x即可判断;
(3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,不小于9就有效.
【详解】
解:(1)设药物燃烧时y关于x的函数关系式为y=k1x (k1≠0),
代入(6,4)得:4=6k1,解得:,
∴药物燃烧时y关于x的函数关系式为:;
设药物燃烧后y关于x的函数关系式为,
代入(6,4)得,解得:k2=24,
∴药物燃烧后y关于x的函数关系式为:;
(2)将y=1.6代入,解得:x=15,
所以从消毒开始,至少需要15分钟后学生方能回到教室;
(3)把y=2代入,得:x=3,
把y=2代入,得:x=12,
∵12−3=9,
所以此次消毒有效.
本题考查了一次函数和反比例函数的综合应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
题号
一
二
三
四
五
总分
得分
分组
频数
百分比
600≤x<800
2
5%
800≤x<1000
6
15%
1000≤x<1200
45%
9
22.5%
1600≤x<1800
2
合计
40
100%
相关试卷
这是一份河北省唐山滦南县联考2024年九上数学开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省滦南县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河北省唐山市名校数学九上开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。