年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】

    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】第1页
    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】第2页
    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】

    展开

    这是一份广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )
    A.B.C.D.
    2、(4分)若样本数据3,4,2,6,x的平均数为5,则这个样本的方差是( )
    A.3B.5C.8D.2
    3、(4分)若a0,则化简的结果为( )
    A.B.C.D.
    4、(4分)一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是( )
    A.B.
    C.D.
    5、(4分)点(1,- 6)关于原点对称的点为( )
    A.(-6,1)B.(-1,6)C.(6,- 1)D.(-1,- 6)
    6、(4分)某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图像是( )
    A.B.
    C.D.
    7、(4分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    8、(4分)如果等腰三角形的两边长分别为2和5,则它的周长为( )
    A.9B.7C.12D.9或12
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直线与坐标轴围成的图形的面积为________.
    10、(4分)已知是实数,且和都是整数,那么的值是________.
    11、(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去…若点, ,则点的坐标为________.
    12、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
    13、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.
    (1)求每小时的进水量;
    (2)当8≤x≤12时,求y与x之间的函数关系式;
    (3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.
    15、(8分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
    (1)根据上图填写下表:
    (2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
    (3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
    16、(8分)如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.
    17、(10分)甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:
    (1)在图①中,“7分”所在扇形的圆心角等于_______
    (2)求图②中,“8分”的人数,并请你将该统计图补充完整。

    (3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?
    (4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
    18、(10分)已知一次函数y=(m﹣2)x﹣3m2+12,问:
    (1)m为何值时,函数图象过原点?
    (2)m为何值时,函数图象平行于直线y=2x?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)等边三角形中,两条中线所夹的锐角的度数为_____.
    20、(4分)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.
    21、(4分)已知,,则2x3y+4x2y2+2xy3=_________.
    22、(4分)已知方程=2,如果设=y,那么原方程可以变形为关于y的整式方程是_____.
    23、(4分)下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.

    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐示系xOy中,直线与直线交于点A(3,m).
    (1)求k,m的値;
    (2)己知点P(n,n),过点P作垂直于y轴的直线与直线交于点M,过点P作垂直于x轴的直线与直线交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.
    25、(10分)△ABC在平面直角坐标系中的位置如图所示.
    (1)画出△ABC关于y轴对称的△A1B1C1;
    (2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
    (3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
    26、(12分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技创新活动,小明家、小刚家、科技馆在一条直线上.已知小明到达科技馆花了20分钟.设两人出发(分钟)后,小明离小刚家的距离为(米),与的函数关系如图所示.
    (1)小明的速度为 米/分, ,小明家离科技馆的距离为 米;
    (2)已知小刚的步行速度是40米/分,设小刚步行时与家的距离为(米),请求出与之间的函数关系式,并在图中画出 (米)与 (分钟)之间的函数关系图象;
    (3)小刚出发几分钟后两人在途中相遇?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.
    【详解】
    ∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,
    ∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO
    ∵∠DOE=90°,
    ∴∠COD+∠COE=90°,且∠AOD+∠COD=90°
    ∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,
    ∴△ADO≌△CEO(ASA)
    ∴AD=CE,OD=OE,故④正确,
    同理可得:△CDO≌△BEO
    ∴CD=BE,
    ∴AC=AD+CD=AD+BE,故①正确,
    在Rt△CDE中,CD2+CE2=DE2,
    ∴AD2+BE2=DE2,故②正确,
    ∵△ADO≌△CEO,△CDO≌△BEO
    ∴S△ADO=S△CEO,S△CDO=S△BEO,
    ∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,
    综上所述:正确的结论有①②③④,
    故选D.
    本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.
    2、C
    【解析】
    先由平均数是5计算出x的值,再计算方差.
    【详解】
    解:∵数据3,4,2,6,x的平均数为5,
    ∴ ,
    解得:x=10,
    则方差为×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,
    故选:C.
    本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
    3、B
    【解析】
    根据二次根式的性质化简即可.
    【详解】
    解:由于a<0,b>0,
    ∴ab<0,
    ∴原式=|ab|=−ab,
    故选:B.
    本题考查二次根式,解题的关键是熟练运用二次根式的性质,属于基础题型.
    4、C
    【解析】
    根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.
    【详解】
    A、平移的距离=1+2=3,
    B、平移的距离=2+1=3,
    C、平移的距离==,
    D、平移的距离=2,
    故选C.
    本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.
    5、B
    【解析】
    根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.
    【详解】
    解:点(1,-6)关于原点对称的点的坐标是(-1,6);
    故选:B.
    本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
    6、A
    【解析】
    首先判断出函数的横、纵坐标所表示的意义,然后再根据题意进行解答.
    【详解】
    纵坐标表示的是速度、横坐标表示的是时间;
    由题意知:小明的走路去学校应分为三个阶段:
    ①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;
    ②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;
    ③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项;
    故选A.
    本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.
    7、A
    【解析】
    由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t,可得出答案.
    【详解】
    由图象可知A、B两城市之间的距离为300km,故①正确;
    甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;
    设甲车离开A城的距离y与t的关系式为y甲=kt,
    把(5,300)代入可求得k=60,
    ∴y甲=60t,
    把y=150代入y甲=60t,可得:t=2.5,
    设乙车离开A城的距离y与t的关系式为y乙=mt+n,
    把(1,0)和(2.5,150)代入可得,解得,
    ∴y乙=100t﹣100,
    令y甲=y乙可得:60t=100t﹣100,解得t=2.5,
    即甲、乙两直线的交点横坐标为t=2.5,
    此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;
    令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,
    当100﹣40t=40时,可解得t=,
    当100﹣40t=﹣40时,可解得t=,
    又当t=时,y甲=40,此时乙还没出发,
    当t=时,乙到达B城,y甲=260;
    综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;
    故选A.
    本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.
    8、C
    【解析】
    试题分析:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C.
    考点:等腰三角形的性质、三角形的三边关系.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.
    【详解】
    由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),
    ∴其图象与两坐标轴围成的图形面积=×4×4=1.
    故答案为:1.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    10、
    【解析】
    根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.
    【详解】
    由题意设m+=a(a为整数),=b(b为整数),
    ∴m=a-,
    ∴=b,
    整理得:

    ∴b2-8=1,8a-ab2=-b,
    解得:b=±3,a=±3,
    ∴m=±3-.
    故答案为​±3-.
    本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..
    11、(1,2)
    【解析】
    先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.
    【详解】
    ∵AO= ,BO=2,
    ∴AB= ,
    ∴OA+AB1+B1C2=6,
    ∴B2的横坐标为:6,且B2C2=2,
    ∴B4的横坐标为:2×6=12,
    ∴点B2018的横坐标为:2018÷2×6=1.
    ∴点B2018的纵坐标为:2.
    ∴点B2018的坐标为:(1,2),
    故答案是:(1,2).
    考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.
    12、
    【解析】
    延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
    【详解】
    延长AB至M,使BM=AE,连接FM,
    ∵四边形ABCD是菱形,∠ADC=120°
    ∴AB=AD,∠A=60°,
    ∵BM=AE,
    ∴AD=ME,
    ∵△DEF为等边三角形,
    ∴∠DAE=∠DFE=60°,DE=EF=FD,
    ∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
    ∴∠MEF=∠ADE,
    ∴△DAE≌EMF(SAS),
    ∴AE=MF,∠M=∠A=60°,
    又∵BM=AE,
    ∴△BMF是等边三角形,
    ∴BF=AE,
    ∵AE=t,CF=2t,
    ∴BC=CF+BF=2t+t=3t,
    ∵BC=4,
    ∴3t=4,
    ∴t=
    考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
    13、或或
    【解析】
    由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
    【详解】
    解:∵∠C=90°,∠A=30°,BC=9,
    ∴∠B=60°,AB=2BC=18,
    ①当∠BQP=90°时,如图1所示:则AC∥PQ,
    ∴∠BPQ=30°,BP=2BQ,
    ∵BP=18-3t,BQ=t,
    ∴18-3t=2t,
    解得:t=;
    ②当∠QPB=90°时,如图2所示:
    ∵∠B=60°,
    ∴∠BQP=30°,
    ∴BQ=2BP,
    若0<t<6时,
    则t=2(18-3t),
    解得:t=,
    若6<t≤9时,
    则t=2(3t-18),
    解得:t=;
    故答案为:或或.
    本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y=3x+1;(3).
    【解析】
    (1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;
    (2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;
    (3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻
    【详解】
    解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米
    ∴(25﹣5)÷(8﹣4)=5(立方米/时)
    ∴每小时的进水量为5立方米.
    (2)设函数y=kx+b经过点(8,25),(12,37)
    解得:∴当8≤x≤12时,y=3x+1
    (3)∵8点到12点既进水又出水时,每小时水量上升3立方米
    ∴每小时出水量为:5﹣3=2(立方米)
    当8≤x≤12时,3x+1≥28,解得:x≥9
    当x>14时,37﹣2(x﹣14)≥28,解得:x≤
    ∴当水塔中的贮水量不小于28立方米时,x的取值范围是9≤x≤
    本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.
    15、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
    【解析】
    (1)根据中位数和众数的定义填空.
    (2)根据平均数和中位数比较两个班的成绩.
    (3)比较每班前两名选手的成绩即可.
    【详解】
    解:(1)由条形图数据可知:中位数填85,众数填1.
    故答案为:85,1;
    (2)因两班平均数相同,
    但八(1)班的中位数高,
    所以八(1)班的成绩较好.
    (3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
    本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
    16、证明见解析.
    【解析】
    连接BD,利用对角线互相平分来证明即可.
    【详解】
    证明:连接BD,交AC于点O.
    ∵四边形ABCD是平行四边形
    ∴OA=OC OB=OD(平行四边形的对角线互相平分)
    又∵AE=CF
    ∴OA﹣AE=OC﹣CF,即OE=OF
    ∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)
    本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
    17、(1)144°;(2)3人,补图见解析;(3)8.3分,7分,乙校;(4)甲校.
    【解析】
    分析:(1)利用360°减去其它各组对应的圆心角即可求解;
    (2)首先求得乙校参赛的人数,即可求得成绩是8分的人数,从而将条形统计图补充完整;
    (3)首先求得得分是9分的人数,然后根据平均数公式和中位数的定义求解;
    (4)只要比较每个学校前8名的成绩即可.
    详解:(1)“7分”所在扇形的圆心角等于360°-90°-72°-54°=144°;
    (2)乙校参赛的总人数是:4÷=20(人),
    则成绩是8分的人数是:20-8-4-5=3(人).

    (3)甲校中得分是9分的人数是:20-11-8=1(人).
    则甲校的平均分是:=8.3(分),
    甲校的中位数是:7分;
    两校的平均数相同,但乙校的中位数大于甲校的中位数,说明乙校的成绩高于甲校的成绩.
    (4)甲得分是10分的正好有8人,而乙班得分是10分的有5人,不足8人,则应选择甲校.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    18、(1)m=﹣2;(2)m=4.
    【解析】
    (1)根据图象经过原点b=0,列出关于m的方程解方程求m的值,再根据k≠0舍去不符合题意的解;
    (2)根据两直线平行k值相等,得出关于m的方程,解方程即可.
    【详解】
    (1)∵一次函数图象经过原点,
    ∴﹣3m2+12=0且m﹣2≠0,
    解﹣3m2+12=0得m=±2,又由m﹣2≠0得m≠2,
    ∴m=-2;
    (2)∵函数图象平行于直线y=2x,
    ∴m﹣2=2,解得m=4.
    本题考查一次函数与坐标轴交点问题,根据一次函数的增减性求参数.(1)中需注意一次函数的一次项系数k≠0;(2)中理解两个一次函数平行k值相等是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、60°
    【解析】
    如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=∠ABC=30°,再根据三角形外角的性质即可得出结论.
    【详解】
    如图,
    ∵等边三角形ABC,AD、BE分别是中线,
    ∴AD、BE分别是角平分线,
    ∴∠1=∠2=∠ABC=30°,
    ∴∠3=∠1+∠2=60°.
    本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.
    20、y=100t-500(15<t≤23)
    【解析】
    分析:
    由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.
    详解:
    ∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,
    ∴李明整个上学过程中的骑车速度为:100米/分钟,
    ∴在自行车出故障前共用时:1000÷100=10(分钟),
    ∵修车用了5分钟,
    ∴当时,是指小明车修好后出发前往学校所用的时间,
    ∴由题意可得:(),
    化简得:().
    故答案为:().
    点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.
    21、-25
    【解析】
    先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.
    【详解】
    ∵,,
    ∴2x3y+4x2y2+2xy3
    =2xy(x2+2xy+y2)
    =2xy(x+y)2
    =2×() ×52
    =-25.
    故答案为-25.
    此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.
    22、3y2+6y﹣1=1.
    【解析】
    根据=y,把原方程变形,再化为整式方程即可.
    【详解】
    设=y,
    原方程变形为:﹣y=2,
    化为整式方程为:3y2+6y﹣1=1,
    故答案为3y2+6y﹣1=1.
    本题考查了用换元法解分式方程,掌握整体思想是解题的关键.
    23、1.
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A. 是轴对称图形,也是中心对称图形。故正确
    B. 不是轴对称图形,也不是中心对称图形。故错误;
    C. 不是轴对称图形,不是中心对称图形。故错误;
    D. 是轴对称图形,不是中心对称图形。故错误。
    故答案为:1
    此题考查中心对称图形,轴对称图形,难度不大
    二、解答题(本大题共3个小题,共30分)
    24、 (1) k=-2;(2) n的取值范围为:或
    【解析】
    (1)把A点坐标代入y=x-2中,求得m的值,再把求得的A点坐标代入y=kx+7中,求得k的值;
    (2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN≤2PM,列出n的不等式,再求得结果.
    【详解】
    (1)∵直线y=kx+7与直线y=x-2交于点A(3,m),
    ∴m=3k+3,m=1.
    ∴k=-2.
    (2)∵点P(n,n),过点P作垂宜于y轴的直线与直线y=x-2交于点M,
    ∴M(n+2,n).
    ∴PM=2.
    ∴PN≤2PM,
    ∴PN≤4.
    ∵过点P作垂直于x轴的直线与直线y=kx+7交于点N,k=-2,
    ∴N(n,-2n+7).
    ∴PN=|3n-7|.
    当PN=4时,如图,即|3n-7|=4,
    ∴n=l或n=
    ∵P与N不重合,
    ∴|3n-7|0.

    当PN≤4(即PN≤2PM)吋,
    n的取值范围为:或
    本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.
    25、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
    【解析】
    (1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
    (2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
    (1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
    【详解】
    (1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
    (2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
    (1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
    本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
    26、(1)60;960;1200;(2)=40(0≤≤24);见解析;(3)12分钟.
    【解析】
    (1)根据图象可求得小明的速度v1,便可得出a的值以及小明家离科技馆的距离;
    (2)根据小刚步行时的速度和小刚家离科技馆的距离,可求出解析式并画出图象;
    (3)两人离科技馆的距离相等时相遇,列出方程可求出答案.
    【详解】
    解:(1)根据图象可知小明4分钟走过的路程为240m,
    列出解析式:s1=v1x,
    代入可得240=4v1,
    解得v1=60米/分钟,
    即小明速度是60米/分钟,
    根据图象可知小明又走了16分钟到达科技馆,
    可得a=16v1,
    代入v1,可得a=960m,
    据题意小明到科技馆共用20分钟,
    可得出小明家离科技馆的距离s2=v1x2,
    解得:s2=60×20=1200m,
    故小明家离科技馆的距离为1200m;
    故答案为:60;960;1200
    (2)列出解析式:y1=40x,
    由(1)可知小刚离科技馆的距离为a=960m,
    代入可得960=40x,
    解得:x=24分钟,
    作出图象如下:
    (3)两人离科技馆的距离相等时相遇,
    当x≥4时,小明所走路程y与x的函数关系式为y=60x-240,
    则60x-240=40x,
    解得:x=12,
    即小刚出发12分钟后两人相遇.
    本题考查了一次函数的应用,有一定难度,解答本题的关键是仔细审题,同学们注意培养自己的读图能力.
    题号





    总分
    得分
    批阅人
    平均数
    中位数
    众数
    八(1)班
    85
    85
    八(2)班
    85
    80
    甲校成绩统计表
    成绩
    7分
    8分
    9分
    10分
    人数
    11
    0
    8

    相关试卷

    2024年广西河池天峨县九年级数学第一学期开学经典试题【含答案】:

    这是一份2024年广西河池天峨县九年级数学第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西壮族自治区河池市东兰县数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年广西壮族自治区河池市东兰县数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西河池市天峨县九上数学开学教学质量检测试题【含答案】:

    这是一份2024-2025学年广西河池市天峨县九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map