广东省广州市天河区2025届九上数学开学质量检测模拟试题【含答案】
展开
这是一份广东省广州市天河区2025届九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2, 0),则点C的坐标为( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
2、(4分)如图,四边形是菱形,经过点、、,与相交于点,连接、.若,则的度数为( )
A.B.C.D.
3、(4分)下列图案中,不是中心对称图形的是( )
A.B.
C.D.
4、(4分)如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是( )
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→矩形→平行四边形→正方形→平行四边形
C.平行四边形→菱形→平行四边形→矩形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
5、(4分)若关于x的方程的解为正数,则m的取值范围是
A.m6C.m6且m≠8
6、(4分)已知,则的关系是( )
A.B.C.D.
7、(4分)下列命题:
①两条直线被第三条直线所截,同位角相等;
②两点之间,线段最短;
③相等的角是对顶角;
④直角三角形的两个锐角互余;
⑤同角或等角的补角相等.
其中真命题的个数是( )
A.2个B.3个C.4个D.5个
8、(4分)计算的的结果是( )
A.B.C.4D.16
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,△ABC中,AH⊥BC于H,点E,D,F分别是AB,BC,AC的中点,HF=10cm,则ED的长度是_____cm.
10、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确结论的序号是________________
11、(4分)若a=,b=,则=_______.
12、(4分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_____个正方形.
13、(4分)如图,在己知的中,按以一下步骤作图:①分别以为圆心,大于的长为半径作弧,相交于两点;②作直线交于点,连接.若,,则的度数为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东航行,乙船向南偏东航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?
15、(8分)计算:
(1)
(2),,求的值.
16、(8分)我县“果菜大王”王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.
(1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?
17、(10分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)求证:△BCE≌△DCF.
(2)判断OG与BF有什么关系,证明你的结论.
(3)若DF2=8-4,求正方形ABCD的面积?
18、(10分)已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.
求证:四边形AECF是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在函数中,自变量x的取值范围是__________________.
20、(4分)正方形中,点是对角线上一动点,过作的垂线交射线于,连接,,则的值为________.
21、(4分)若一个多边形的内角和与外角和之和是1800°,则此多边形是___边形.
22、(4分)如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是_____(只需添加一个即可)
23、(4分)已知锐角,且sin=cs35°,则=______度.
二、解答题(本大题共3个小题,共30分)
24、(8分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等
(1)求A、B两种零件的单价;
(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?
25、(10分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE并延长至点F,使EF=DE,连接AF,DC.求证:四边形ADCF是菱形.
26、(12分)(1)分解因式:;(2)利用分解因式简便计算:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH-OB=3-2=1,于是可写出C点坐标.
【详解】
作CH⊥x轴于H,如图,
∵点B的坐标为(2,0),AB⊥x轴于点B,
∴A点横坐标为2,
当x=2时,y=x=2,
∴A(2,2),
∵△ABO绕点B逆时针旋转60°得到△CBD,
∴BC=BA=2,∠ABC=60°,
∴∠CBH=30°,
在Rt△CBH中,CH=BC=,
BH=CH=3,
OH=BH-OB=3-2=1,
∴C(-1,).
故选A.
2、C
【解析】
由菱形的性质求出∠ACB=50°,由边形是圆内接四边形可求出∠AEB=80°,然后利用三角形外角的性质即可求出的度数.
【详解】
∵四边形是菱形,,
∴,
∵四边形是圆内接四边形,
∴,
∴,
故选:C.
本题考查了菱形的性质,圆内接四边形的性质,三角形外角的性质. 圆内接四边形的性:①圆内接四边形的对角互补,②圆内接四边形的外角等于它的内对角,③圆内接四边形对边乘积的和,等于对角线的乘积.
3、D
【解析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;对于图A,分析可知,其绕着图形的圆心旋转180°后与原来的图形重合,故是中心对称图形,同理再分析其他选项即可.
【详解】
根据中心对称图形的概念可知,A、B、C都是中心对称图形,不符合题意;
D不是中心对称图形,符合题意.
故选:D.
本题考查了中心对称图形的判断,解题的关键是掌握中心对称图形定义;
4、C
【解析】
先判断出点E在移动过程中,四边形AECF始终是平行四边形,当∠AFC=80°时,四边形AECF是菱形,当∠AFC=90°时,四边形AECF是矩形,即可求解.
【详解】
解:∵点O是平行四边形ABCD的对角线得交点,
∴OA=OC,AD∥BC,
∴∠ACF=∠CAD,∠ADB=∠DBC=20°
∵∠COF=∠AOE,OA=OC,∠DAC=∠ACF
∴△AOE≌△COF(ASA),
∴AE=CF,
∵AE∥CF,
∴四边形AECF是平行四边形,
∵∠ADB=∠DBC=20°,∠ACB=50°,
∴∠AFC>20°
当∠AFC=80°时,∠FAC=180°-80°-50°=50°
∴∠FAC=∠ACB=50°
∴AF=FC
∴平行四边形AECF是菱形
当∠AFC=90°时,平行四边形AECF是矩形
∴综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.
故选:C.
本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力,题目比较好,难度适中.
5、C
【解析】
原方程化为整式方程得:2﹣x﹣m=2(x﹣2),
解得:x=2﹣,
∵原方程的解为正数,
∴2﹣>0,
解得m<6,
又∵x﹣2≠0,
∴2﹣≠2,即m≠0.
故选C.
本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.
6、D
【解析】
将a进行分母有理化,比较a与b即可.
【详解】
∵,,
∴.
故选D.
此题考查了分母有理化,分母有理化时正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.
7、B
【解析】
解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;
命题②两点之间,线段最短,正确,为真命题;
命题③相等的角是对顶角,错误,为假命题;
命题④直角三角形的两个锐角互余,正确,为真命题;
命题⑤同角或等角的补角相等,正确,为真命题,
故答案选B.
考点:命题与定理.
8、C
【解析】
根据算术平方根和平方根进行计算即可
【详解】
=4
故选:C
此题考查算术平方根和平方根,掌握运算法则是解题关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分析中先利用直角三角形的性质,然后再利用三角形的中位线定理可得结果.
【详解】
∵AH⊥BC,F是AC的中点,
∴FH=AC=1cm,
∴AC=20cm,
∵点E,D分别是AB,BC的中点,
∴ED=AC,
∴ED=1cm.
故答案为:1.
本题考查的知识点:三角形中位线定理和直角三角形斜边上的中线等于斜边的一半,是基础知识较简单.
10、①②④
【解析】
根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC-BE=CD-DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF=,
设正方形的边长为a,
在Rt△ADF中,
AD2+DF2=AF2,即a2+(a-)2=4,
解得a=,
则a2=2+,
S正方形ABCD=2+,
④说法正确,
故答案为①②④.
本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.
11、
【解析】
先运用平方差公式把化为(a+b)(a-b),然后将a与b的值代入计算即可求出值.
【详解】
解:∵=(a+b)(a-b),
∴=2×(-2)=.
此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
12、1
【解析】
观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)个正方形从而得到答案.
【详解】
解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,
…
∴第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1),
∴第4幅图中有12+22+32+42=1个正方形.
故答案为1.
此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.
13、105°
【解析】
根据垂直平分线的性质,可知,BD=CD,进而,求得∠BCD的度数,由,,可知,∠ACD=80°,即可得到结果.
【详解】
根据尺规作图,可知,MN是线段BC的中垂线,
∴BD=CD,
∴∠B=∠BCD,
又∵,
∴∠A=∠ADC=50°,
∵∠B+∠BCD=∠ADC=50°,
∴∠BCD==25°,
∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,
∴=∠BCD+∠ACD=25°+80°=105°.
本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、30(海里/时)
【解析】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形,可以通过勾股定理计算出AB的长度,然后求乙船的速度.
【详解】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形
又AC为甲船航行的路程,则AC=16×3=48
由可知:
AB=
所以乙船的航速为90÷3=30(海里/时)
故答案为30(海里/时)
本题考察了方位角的判断,构造出直角三角形,运用勾股定理解题,需要清楚的是勾股定理是指,直角三角形中两个直角边的平方和等于斜边的平方.
15、 (1) ;(2).
【解析】
(1)运用二次根式运算法则,直接计算即可;
(2)首先转化代数式,然后代入即可得解.
【详解】
(1) 原式=
(2)
=
此题主要考查二次根式的运算,熟练运用,即可解题.
16、(1)三种方案;(2)最少运费是2010元.
【解析】
试题分析:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,根据车辆运送的番茄要求大于或等于20吨,青椒大于或等于12吨,可得出不等式组,解出即可.
(2)分别计算每种方案的运费,然后比较即可得出答案.
试题解析:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,
依题意得:,
解得:2≤x≤1,
∵x是正整数,
∴x可取的值为2,3,1.
因此安排甲、乙两种货车有如下三种方案:
(2)方案一所需运费为300×2+210×6=2 010元;
方案二所需运费为300×3+210×5=2 100元;
方案三所需运费为300×1+210×1=2 160元.
答:王大炮应选择方案一运费最少,最少运费是2010元.
17、(2)证明见解析.(2)OG∥BF且OG=BF;证明见解析.(3)2.
【解析】
(2)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;
(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;
(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-2)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.
【详解】
(2)证明:在△BCE和△DCF中,
,
∴△BCE≌△DCF(SAS);
(2)OG∥BF且OG=BF,
理由:如图,
∵BE平分∠DBC,
∴∠2=∠3,
在△BGD和△BGF中,
,
∴△BGD≌△BGF(ASA),
∴DG=GF,
∵O为正方形ABCD的中心,
∴DO=OB,
∴OG是△DBF的中位线,
∴OG∥BF且OG=BF;
(3)设BC=x,则DC=x,BD=x,由(2)知△BGD≌△BGF,
∴BF=BD,
∴CF=(-2)x,
∵DF2=DC2+CF2,
∴x2+[(-2)x]2=8-4,解得x2=2,
∴正方形ABCD的面积是2.
考点:2.正方形的性质;2.全等三角形的判定与性质;3.勾股定理.
18、证明见解析.
【解析】
求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据△AOE≌△COF即可证明OE=OF.
【详解】
证明:∵平行四边形ABCD中AB∥CD,
∴∠OAE=∠OCF,
又∵OA=OC,∠COF=∠AOE,
∴△AOE≌△COF(ASA),
∴OE=OF,又∵OA=OC
∴四边形AECF是平行四边形.
本题考查平行四边形的判定与性质,熟练掌握性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥0且x≠1
【解析】
根据被开方数是非负数且分母不等于零,可得答案.
【详解】
由题意,得x≥0且x﹣1≠0,
解得x≥0且x≠1,
故答案为:x≥0且x≠1.
本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.
20、
【解析】
如图,连接PC.首先证明PA=PC,利用相似三角形的性质即可解决问题.
【详解】
解:如图,连接PC.
∵四边形ABCD是正方形,
∴点A,点C关于BD对称,∠CBD=∠CDB=45°,
∴PA=PC,
∵PE⊥BD,
∴∠DPE=∠DCB=90°,
∴∠DEP=∠DBC=45°,
∴△DPE∽△DCB,
∴,
∴,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴,
∴BE:PA=,
故答案为.
本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、十
【解析】
试题分析:设所求n边形边数为n,先根据多边形的外角和为360度得到多边形的内角和,再根据多边形的内角和公式,即可得到结果.
由题意得多边形的内角和为1800°-360°=1440°,
设所求n边形边数为n,则180°(n-2)=1440°,解得n=10,
则此多边形是十边形.
考点:本题考查的是多边形的内角和公式,多边形的外角和
点评:解答本题的关键是熟练掌握多边形的内角和公式:180°(n-2),任意多边形的外角和均是360度,与边数无关.
22、∠ABC=90°或AC=BD.
【解析】
试题分析:此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.
解:条件为∠ABC=90°,
理由是:∵平行四边形ABCD的对角线互相垂直,
∴四边形ABCD是菱形,
∵∠ABC=90°,
∴四边形ABCD是正方形,
故答案为∠ABC=90°.
点睛:本题主要考查正方形的判定.熟练运用正方形判定定理是解题的关键.
23、1
【解析】
对于任意锐角A,有sinA=cs(90°-A),可得结论.
【详解】
解:∵sinα=cs35°,
∴α=90°-35°=1°,
故答案为:1.
此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.
二、解答题(本大题共3个小题,共30分)
24、(1)A种零件的单价为1元,B种零件的单价为60元;(2)最多购进A种零件2件.
【解析】
(1)设A种零件的单价是x元,则B种零件的单价是(x-20)元,根据“用10元购买A种零件的数量和用600元购买B种零件的数量相等”列出方程并解答;
(2)设购买A种零件a件,则购买B种零件(200-a)件,根据“购买两种零件的总费用不超过14700元”列出不等式并解答.
【详解】
解:(1)设B种零件的单价为x元,则A零件的单价为(x+20)元,
则
解得:x=60
经检验:x=60 是原分式方程的解, x+20=1.
答:A种零件的单价为1元,B种零件的单价为60元.
(2)设购进A种零件m件,则购进B种零件(200﹣m)件,则有
1m+60(200﹣m)≤14700,
解得:m≤2,
m在取值范围内,取最大正整数, m=2.
答:最多购进A种零件2件.
考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
25、证明见解析.
【解析】
试题分析:先证明四边形ADCF是平行四边形,再证明DE是△ABC的中位线,得出DE∥BC,证出AC⊥DF,即可得出结论.
试题解析:证明:∵E是AC的中点,∴AE=CE.
∵EF=DE,
∴四边形ADCF是平行四边形.
∵D、E分别是AB、AC的中点,
∴DE∥BC.
∴∠AED=∠ACB.
∵∠ACB=90°,
∴∠AED=90°,即AC⊥DF.
∴□ADCF是菱形.
26、(1);(2)1.
【解析】
(1)先提公因式,再利用平方差公式进行计算即可
(2)运用完全平方公式,将因式因式分解即可
【详解】
解:(1)原式
(2)原式=2019 -2019×2×2020+2020
此题考查因式分解的应用,掌握运算法则是解题关键
题号
一
二
三
四
五
总分
得分
甲种货车
乙种货车
方案一
2辆
6辆
方案二
3辆
5辆
方案三
1辆
1辆
相关试卷
这是一份广东省广州市2024年数学九上开学检测模拟试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省广州市第七中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省阳江地区九上数学开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。