


福建省泉州市惠安四中学、东山中学2025届九年级数学第一学期开学综合测试试题【含答案】
展开
这是一份福建省泉州市惠安四中学、东山中学2025届九年级数学第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若式子在实数范围内有意义,则x的取值范围是( )
A.x>B.x>C.x≥D.x≥
2、(4分)若是关于的一元二次方程的一个解,则2035-2a+b的值( )
A.17B.1026C.2018D.4053
3、(4分)的值等于
A.3B.C.D.
4、(4分)如图,若将图正方形剪成四块,恰能拼成图的矩形,设,则的值为( )
A.B.C.D.
5、(4分)如图,中,,点D在AC边上,且,则的度数为
A.B.C.D.
6、(4分)中,,则一定是( )
A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形
7、(4分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )
A.先把△ABC向左平移5个单位,再向下平移2个单位
B.先把△ABC向右平移5个单位,再向下平移2个单位
C.先把△ABC向左平移5个单位,再向上平移2个单位
D.先把△ABC向右平移5个单位,再向上平移2个单位
8、(4分)函数y=中自变量x的取值范围是( )
A.x≠2B.x≠0C.x≠0且x≠2D.x>2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,折线ABC是某市在2018年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费__________元.
10、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.
11、(4分)若关于x的分式方程的解为非负数,则a的取值范围是_____.
12、(4分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.
13、(4分)已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.
(1)求证:△PCQ∽△RDQ;
(2)求BP:PQ:QR的值.
15、(8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1)求参加这次调查的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?
16、(8分)先阅读下列材料,再解答下列问题:
材料:因式分解:(x+y)2+2(x+y)+1.
解:将“x+y”看成整体,令x+y=A,则
原式=A2+2A+1=(A+1)2.
再将“A”还原,得原式=(x+y+1)2.
上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:1+2(x-y)+(x-y)2=_______________;
(2)因式分解:(a+b)(a+b-4)+4;
(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
17、(10分)□ABCD中,AC=6,BD=10,动点P从B出发以每秒1个单位的速度沿射线BD匀速运动,动点Q从D出发以相同速度沿射线DB匀速运动,设运动时间为t秒.
(1)当t =2时,证明以A、P、C、Q为顶点的四边形是平行四边形.
(2)当以A、P、C、Q为顶点的四边形为矩形时,直接写出t的值.
(3)设PQ=y,直接写出y与t的函数关系式.
18、(10分)在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形.如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.
解决问题:
(1)如图1,∠A=∠B=∠DEC=70°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)四边形AOBC在平面直角坐标系中的位置如图2所示,若点A,B,C的坐标分别为(6,8)、(25,0)、(19,8),则在四边形AOBC的边OB上是否存在强相似点?若存在,请求出其坐标;若不存在,请说明理由;
(3)如图3,将矩形ABCD沿CE折叠,使点D落在AB边上的点F处,若点F恰好是四边形ABCE的边AB上的一个强相似点,直接写出的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形中,,菱形的面积为24,则菱形周长为________
20、(4分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为_____.
21、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
22、(4分)如图是一张三角形纸片,其中,从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的边上,其面积为,则该矩形周长的最小值=________
23、(4分)已知函数 的图像经过点A(1,m)和点B(2,n),则m___n(填“>”“5时).
【解析】
分析:(1)只需要证明四边形APCQ的对角线互相平分即可证明其为平行四边形.
(2)根据矩形的性质可知四边形APCQ的对角线相等,然后分两种情况即可解答.
(3)根据(2)中的图形,分两种情况进行讨论即可.
详解:(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC=3,OB=OD=5,
当t=2时,BP=QD=2,
∴OP=OQ=3,
∴四边形APCQ是平行四边形;
(2)t =2或t =8;
理由如下:
图一:
图二:
∵四边形APCQ是矩形,
∴PQ=AC=6,
则BQ=PD=2,
第一个图中,BP=6+2=8,则此时t=8;
第二个图中,BP=2,则此时t=2.
即以A、P、C、Q为顶点的四边形为矩形时,t的值为2或8;
(3)根据(2)中的两个图形可得出:
y=-2t+10(时),
y=2y-10(时).
点睛:本题主要考查了矩形的性质和平行四边形的判定,结合题意画出图形是解答本题的关键.
18、 (1)是(2)存在(3)
【解析】
(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.
(2)当点E是AB中点时,点E是四边形ABCD的边AB上的强相似点.只要证明△DEC∽△EBC即可.
(3)由点E是矩形ABCD的AB边上的一个强相似点,得△AEM∽△BCE∽△ECM,根据相似三角形的对应角相等,可求得,利用含30°角的直角三角形性质可得BE与AB,BC边之间的数量关系,从而可求出AB与BC边之间的数量关系.
【详解】
(1)如图1中,结论:点E是四边形ABCD的边AB上的相似点.理由如下:
∵∠DEB=∠A+∠ADE=∠DEC+∠CEB,
又∵∠A=∠B=∠DEC,
∴∠ADE=∠CEB,
∵∠A=∠B,
∴△DAE∽△EBC.
∴E是四边形ABCD的边AB上的相似点.
(2)当点E是AB中点时,点E是四边形ABCD的边AB上的强相似点.
理由:∵△DAE∽△EBC,
∴
∴
∵AE=EB,
∴
∵∠DEC=∠B,
∴△DEC∽△EBC,
∴点E是四边形ABCD的边AB上的强相似点.
(3)如图2中,结论:.理由如下:
∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴
在Rt△BCE中,
∴
属于相似形综合题,考查相似三角形的判定与性质,解直角三角形,全等三角形的判定与性质,综合性比较强,难度较大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20
【解析】
根据菱形面积公式可求BD的长,根据勾股定理可求菱形边长,即可求周长.
【详解】
解:∵S菱形ABCD=AC×BD,
∴24=×8×BD,
∴BD=6,
∵ABCD是菱形,
∴AO=CO=4,BO=DO=3,AC⊥BD,
∴,
∴菱形ABCD的周长为4×5=20.
本题考查了菱形的性质,利用菱形的面积公式求BD的长是本题的关键.
20、1
【解析】
∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,
∴平移距离=8÷4=1.
点睛:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.
21、1
【解析】
根据自变量与函数值的对应关系,可得相应的函数值.
【详解】
当x=3时,y=﹣3+5=1.
故答案为:1.
本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.
22、
【解析】
分两种情况讨论,(1)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;(2)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;两个周长进行比较可得结果.
【详解】
(1)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
当时
当时
∵
∴矩形的周长最小值为
(2)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
所以和(1)的结果一致
综上所述:矩形周长的最小值为
本题考查了矩形的面积和一元二次方程,利用数形结合是常用的解题方法.
23、>
【解析】
分析:根据一次函数的性质得到y随x的增大而减小,根据1
相关试卷
这是一份福建省泉州市惠安科山中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省惠安高级中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年福建省泉州市惠安县数学九年级第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
