年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】

    福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】第1页
    福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】第2页
    福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】

    展开

    这是一份福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
    A.B.C.D.
    2、(4分)若线段,且点C是AB的黄金分割点,则BC等于( )
    A.B.C.或D.或
    3、(4分)菱形的两条对角线长分别为12与16,则此菱形的周长是( )
    A.10B.30C.40D.100
    4、(4分)一次函数y=kx+b的图象经过第一、三、四象限,则( )
    A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
    5、(4分)在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为( )
    A.3B.2C.1D.-1
    6、(4分)已知点(-1,y1),(1,y2),(-2,y3)都在直线y=-x上,则y1,y2,y3的大小关系是( )
    A..y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y2
    7、(4分)如图,在中,平分,交于点,平分,交于点,,,则长为( )
    A.B.C.D.
    8、(4分)如图,F是菱形ABCD的边AD的中点,AC与BF相交于E,于G,已知,则下列结论:;;:其中正确的结论是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知,则的值为_____.
    10、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.
    11、(4分)函数中,自变量的取值范围是___.
    12、(4分)将正比例函数的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.
    13、(4分)若y=,则x+y= .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形ABCD是边长为的正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
    (1)求证:△AMB≌△ENB;
    (2)当M点在何处时,AM+BM+CM的值最小,说明理由;并求出AM、BM、CM的值.
    15、(8分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
    (1)如图1,当E是线段AC的中点时,求证:BE=EF.
    (2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.
    16、(8分)再读教材:
    宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)
    第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.
    第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.
    第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,
    第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,
    问题解决:
    (1)图③中AB=________(保留根号);
    (2)如图③,判断四边形 BADQ的形状,并说明理由;
    (3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
    (4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
    17、(10分)正方形中,点是上一点,过点作交射线于点,连结.
    (1)已知点在线段上.
    ①若,求度数;
    ②求证:.
    (2)已知正方形边长为,且,请直接写出线段的长.
    18、(10分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将边长为4的正方形纸片沿折叠,点落在边上的点处,点与点重合, 与交于点,取的中点,连接,则的周长最小值是__________.
    20、(4分)如图,把一张矩形的纸沿对角线BD折叠,若AD=8,AB=6,则BE=__.
    21、(4分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.
    22、(4分)如图,是的角平分线,交于,交于.且交于,则________度.
    23、(4分)数据﹣2、﹣1、0、1、2的方差是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解方程:+=1.
    25、(10分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
    26、(12分)计算:
    (1).
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    关于x轴对称的点的坐标,一元一次不等式组的应用.
    【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:
    ∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.
    ∴.
    解不等式①得,a>-1,解不等式②得,a<,
    所以,不等式组的解集是-1<a<.故选B.
    2、D
    【解析】
    分AC<BC、AC>BC两种情况,根据黄金比值计算即可.
    【详解】
    解:当AC<BC时,BC= AB=,
    当AC>BC时,BC==,
    故选:D.
    本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.
    3、C
    【解析】
    首先根据题意画出图形,然后由菱形的两条对角线长分别为12与16,利用勾股定理求得其边长,继而求得答案.
    【详解】
    解:∵如图,菱形ABCD中,AC=16,BD=12,
    ∴OA=AC=8,OB=BD=6,AC⊥BD,
    ∴AB==10,
    ∴此菱形的周长是:4×10=1.
    故选:C.
    此题考查了菱形的性质以及勾股定理.注意根据题意画出图形,结合图形求解是解此题的关键.
    4、B
    【解析】
    根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
    【详解】
    由一次函数y=kx+b的图象经过第一、三、四象限
    又由k>1时,直线必经过一、三象限,故知k>1
    再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.
    故选:B.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
    5、C
    【解析】
    根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.
    【详解】
    解:∵点A(2,m),
    ∴点A关于x轴的对称点B(2,−m),
    ∵B在直线y=−x+1上,
    ∴−m=−2+1=−1,
    ∴m=1,
    故选C.
    此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.
    6、C
    【解析】
    先根据直线y=-x判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
    【详解】
    解:∵直线y=-x,k=-1<0,
    ∴y随x的增大而减小,
    又∵-1<-1<1,
    ∴y3>y1>y1.
    故选:C.
    本题考查的是正比例函数的增减性,即正比例函数y=kx(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
    7、A
    【解析】
    先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.
    【详解】
    ∵四边形是平行四边形
    ∴,,∥
    ∵平分,平分
    ∴,
    ∴,



    故选A
    本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.
    8、A
    【解析】
    证=,可得易证△AEF≌△AEG(SAS),所以,∠AFE=∠AGE,所以,;由=,可证=,连接BD,易证△ABF≌△BAO,可得,BF=AO,所以,AC=2BF;同理,可证△BOE≌△BGF,可得,OE=EG,所以,CE=CO+OE=BF+EG.
    【详解】
    因为,四边形ABCD是菱形,
    所以,,AB=AD=CD=BC,
    所以,=,
    所以,
    因为,
    所以,=,
    又因为,
    所以,,AG=,
    又因为F是菱形ABCD的边AD的中点,
    所以,AF=,
    所以,AF=AG,
    所以,易证△AEF≌△AEG(SAS),
    所以,∠AFE=∠AGE,
    所以,,
    所以,由=,
    可证=,
    连接BD,
    易证△ABF≌△BAO,
    所以,BF=AO,
    所以,AC=2BF,
    同理,可证△BOE≌△BGF,
    所以,OE=EG,
    所以,CE=CO+OE=BF+EG,
    综合上述,正确
    故选:A
    此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通,难度一般.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据二次根式有意义的条件:被开方数是非负数,即可求得x的值,进而求得y的值,然后代入求解即可.
    【详解】
    解:根据题意得:,解得:,
    ∴,
    ∴,
    故答案为.
    考查了二次根式的意义和性质.概念:式子(a≥1)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为1,这几个非负数都为1.
    10、504m2
    【解析】
    由OA =2n知OA = +1=1009,据此得出A A =1009-1=1008,据此利用三角形的面积公式计算可得.
    【详解】
    由题意知OA =2n,
    ∵2018÷4=504…2,
    ∴OA = +1=1009,
    ∴A A =1009-1=1008,
    则△O A A的面积是×1×1008=504m2
    此题考查规律型:数字变换,解题关键在于找到规律
    11、
    【解析】
    根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    【详解】
    根据题意得:,解得:.
    故答案是:.
    函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    12、
    【解析】
    根据“左加右减”的法则求解即可.
    【详解】
    解:将正比例函数的图象向右平移2个单位,
    得=,
    故答案为:.
    本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
    13、1.
    【解析】
    试题解析:∵原二次根式有意义,
    ∴x-3≥0,3-x≥0,
    ∴x=3,y=4,
    ∴x+y=1.
    考点:二次根式有意义的条件.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)M点位于BD与CE的交点时,理由见解析;,
    【解析】
    (1)由旋转的性质可知:BN=BM,BA=BE,然后再证明∠NBE=∠MBA,最后依据SAS证明△AMB≌△ENB即可;
    (2)连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F,先证明∠EBF=30°,从而可求得EF,BC的长,由(1)可知EN=AM,然后证明△BNM为等边三角形,从而可得到BM=MN,则AM+BM+MC=EN+NM+MC≤EC,最后,依据勾股定理求得EC的长即可.
    【详解】
    解:(1)由旋转的性质可知:BN=BM,BA=BE.
    ∵△BAE为等边三角形,
    ∴∠EBA=60°.
    又∵∠MBN=60°,
    ∴∠NBE=∠MBA.
    在:△AMB和△ENB中,BN=BM,∠NBE=∠MBA,BA=BE,
    ∴△AMB≌△ENB.
    (2)如图所示:连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F.
    ∵△ABE为等边三角形,ABCD为正方形,
    ∴∠EBA=60°,∠ABC=90°,
    ∴∠EBC=150°.
    ∴∠EBF=30°.


    由(1)可知:△AMB≌△ENB,
    ∴EN=AM.
    又∵BN=BM,∠NBM=60°,
    ∴△BNM为等边三角形.
    ∴BM=MN.
    ∴AM+BM+MC=EN+NM+MC≥EC.
    ∴AM+BM+MC的最小值
    =EC
    过点M作MG⊥BC,垂足为G,设BG=MG=x,则NB=x,
    EN=AM=MC

    ∴x=

    本题主要考查的是主要考查的是旋转的性质、正方形的性质、全等三角形的性质和判定,找出AM+BM+MC取得最小值的条件是解题的关键.
    15、 (1)详见解析;(2)结论成立,理由详见解析.
    【解析】
    (1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=∠ABE=30°,AE=CE,由AE=CF得CE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点E作EG∥BC交AB于点G,可得∠AGE=∠ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.
    【详解】
    (1)∵四边形ABCD是菱形,
    ∴AB=BC,
    ∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴∠BCA=60°,
    ∵E是线段AC的中点,
    ∴∠CBE=∠ABE=30°,AE=CE,
    ∵CF=AE,
    ∴CE=CF,
    ∵∠ECF=120°,
    ∴∠F=∠CEF=30°
    ∴∠CBE=∠F=30°,
    ∴BE=EF;
    (2)结论成立;理由如下:
    过点E作EG∥BC交AB于点G,如图2所示:
    ∵四边形ABCD为菱形,
    ∴AB=BC,∠BCD=120°,AB∥CD,
    ∴∠ACD=60°,∠DCF=∠ABC=60°,
    ∴∠ECF=120°,
    又∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴AB=AC,∠ACB=60°,
    又∵EG∥BC,
    ∴∠AGE=∠ABC=60°,
    又∵∠BAC=60°,
    ∴△AGE是等边三角形,
    ∴AG=AE=GE,∠AGE=60°,
    ∴BG=CE,,
    又∵CF=AE,
    ∴GE=CF,
    ∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,
    ∴△BGE≌△ECF(SAS),
    ∴BE=EF.
    本题考查菱形的性质,等边三角形,全等三角形的性质,熟练掌握相关知识是解题关键.
    16、(1);(2)见解析;(3) 见解析; (4) 见解析.
    【解析】
    分析:(1)由勾股定理计算即可;
    (2)根据菱形的判定方法即可判断;
    (3)根据黄金矩形的定义即可判断;
    (4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.
    详解:(1)如图3中.在Rt△ABC中,AB===.
    故答案为.
    (2)结论:四边形BADQ是菱形.理由如下:
    如图③中,∵四边形ACBF是矩形,∴BQ∥AD.
    ∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.
    (3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.

    ∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.
    ∵BC=2,∴=,∴矩形BCDE是黄金矩形.
    ∵==,∴矩形MNDE是黄金矩形.
    (4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.

    长GH=﹣1,宽HE=3﹣.
    点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.
    17、(1)①;②见解析;(2)的长为或
    【解析】
    (1) ①根据正方形性质,求出;根据等腰三角形性质,求出的度数,即可求得.
    ②根据正方形对称性得到;根据四边形内角和证出;利用等角对等边即可证出.
    (2)分情况讨论:①当点F在线段BC上时; ②当点F在线段CB延长线上时;根据正方形的对称性,证出;再根据等腰三角形的性质,求出线段NC,BN;利用勾股定理,求出BE、BD,进而求出DE.
    【详解】
    解:(1)①为正方形,

    又,

    ②证明:正方形关于对称,



    又,





    (2)①当点F在线段BC上时,过E作MN⊥BC,垂足为N,交AD于M,如图1所示:

    ∴N是CF的中点,
    ∴BF=1,∴CF=1

    又∵四边形CDMN是矩形
    ∴为等腰直角三角形


    ②当点F在线段CB延长线上时,如图2所示:
    过点E作MN⊥BC,垂足为N,交AD于M
    ∵正方形ABCD关于BD对称


    又∵



    ∴FC=3


    ∴ ,
    综上所述,的长为或
    本题考查了三角形全等、等腰三角形的性质、三线合一、勾股定理等知识点;难点在(2),注意分情况讨论;本题难度较大,属于中考压轴题.
    18、甲机器人每小时各检测零件30个,乙机器人每小时检测零件20个。
    【解析】
    设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个,根据题意列出方程即可.
    【详解】
    解:设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个
    由题得
    解得
    检验,符合题意,则甲:.
    本题考查的是分式方程,熟练掌握分式方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    如图,取CD中点K,连接PK,PB,则CK=2,由折叠的性质可得PG=PC,GH=DC=4,PQ=PK,BP=PG,QG=2,要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,即求PK+PB的最小值,观察图形可知,当K、P、B共线时,PK+PB的值最小,据此根据勾股定理进行求解即可得答案.
    【详解】
    如图,取CD中点K,连接PK,PB,
    则CK==2,
    ∵四边形ABCD是正方形,∴∠ABC=90°,
    ∵将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合, CG与EF交于点P,取GH的中点Q,
    ∴PG=PC,GH=DC=4,PQ=PK,
    ∴BP=PG,QG=2,
    要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,
    即求PK+PB的最小值,
    观察图形可知,当K、P、B共线时,PK+PB的值最小,
    此时,PK+PB=BK=,
    ∴△PGQ周长的最小值为:PQ+PG+QG= PK+PB+QG=BK+QG=2+2,
    故答案为2+2.
    本题考查了正方形的性质,轴对称图形的性质,直角三角形斜边中线的性质,综合性较强,难度较大,正确添加辅助线,找出PQ+PG的最小值是解题的关键.
    20、
    【解析】
    试题解析:∵AD∥BC,
    ∴∠EDB=∠CBD,又∠EBD=∠CBD,
    ∴∠EBD=∠EDB,
    ∴EB=ED,又BC′=BC=AD,
    ∴EA=EC′,
    在Rt△EC′D中,
    DE2=EC′2+DC′2,即DE2=(8-DE)2+62,
    解得DE=.
    21、1
    【解析】
    根据∠BAD和菱形邻角和为180°的性质可以求∠ABC的值,根据菱形对角线即角平分线的性质可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根据∠BOE和菱形对角线互相垂直的性质可以求得∠EOA的大小.
    【详解】
    解:∵∠BAD=80°,菱形邻角和为180°
    ∴∠ABC=100°,
    ∵菱形对角线即角平分线
    ∴∠ABO=50°,
    ∵BE=BO
    ∴∠BEO=∠BOE==65°,
    ∵菱形对角线互相垂直
    ∴∠AOB=90°,
    ∴∠AOE=90°-65°=1°,
    故答案为 1.
    本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了等腰三角形底角相等的性质,本题中正确的计算∠BEO=∠BOE=65°是解题的关键.
    22、
    【解析】
    先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.
    【详解】
    如图所示:
    ∵DE∥AC,DF∥AB,
    ∴四边形AEDF为平行四边形,
    ∴OA=OD,OE=OF,∠2=∠3,
    ∵AD是△ABC的角平分线,
    ∵∠1=∠2,
    ∴∠1=∠3,
    ∴AE=DE.
    ∴▱AEDF为菱形.
    ∴AD⊥EF,即∠AOF=1°.
    故答案是:1.
    考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.
    23、2
    【解析】
    根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.
    【详解】
    由题意可得,
    这组数据的平均数是:x= =0,
    ∴这组数据的方差是: ,
    故答案为:2.
    此题考查方差,解题关键在于掌握运算法则
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    试题分析:
    解:+=1
    经检验:是原方程的解.
    本题考查解分式方程,只需学生熟练掌握解方程的一般步骤,即可完成,注意分式方程结果要检验.
    25、见解析.
    【解析】
    利用向量的加法的平行四边形法则即可解决问题.
    【详解】
    如图:
    即为所求.
    本题考查作图-复杂作图,平面向量等知识,解题的关键是熟练掌握向量的加法的平行四边形法则,属于中考常考题型.
    26、 (1)3-2+2;(2)2.
    【解析】
    (1)先算负整数指数幂,0次幂,绝对值,化简二次根式,再进一步合并即可;
    (2)利用二次根式混合运算顺序,把二次根式化简,先算乘除再算加减.
    【详解】
    (1)解:原式=4-1-2+2
    =3-2+2.
    (2)解:原式=2+1-3+2
    =2.
    此题考查实数和二次根式的混合运算,掌握运算顺序与化简的方法是解决问题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2025届四川省泸州市名校数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2025届四川省泸州市名校数学九年级第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年云南省曲靖市名校九年级数学第一学期开学经典模拟试题【含答案】:

    这是一份2024年云南省曲靖市名校九年级数学第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map