北京四十四中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】
展开
这是一份北京四十四中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于分式方程,有以下说法:①最简公分母为(x﹣3)2; ②转化为整式方程x=2+3,解得x=5; ③原方程的解为x=3; ④原方程无解.其中,正确说法的个数为( )
A.1个B.2个C.3个D.4个
2、(4分)已知a、b是方程x2-2x-1=0的两根,则a2+a+3b的值是( )
A.7 B.5 C.-5 D.-7
3、(4分)已知y=(k-3)x|k|-2+2是一次函数,那么k的值为( )
A.B.3C.D.无法确定
4、(4分)9的算术平方根是( )
A.B.C.D.
5、(4分)一个三角形的三边分别是3、4、5,则它的面积是( )
A.6B.12C.7.5D.10
6、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
A.B.C.D.
7、(4分)一次函数的图像上有点,B(2,),则下面关系正确的是( )
A.>>B.>>C.>>D.>>
8、(4分)如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于 BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为( ).
A.17B.16C.15D.14
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对于一次函数,若,那么对应的函数值y1与y2的大小关系是________.
10、(4分)如图,在正方形网格中有3个小方格涂成了灰色.现从剩余的13个白色小方格中选一个也涂成灰色,使整个涂成灰色的图形成轴对称图形,则这样的白色小方格有______个.
11、(4分)已知一次函数的图象如图,根据图中息请写出不等式的解集为__________.
12、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
13、(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,,满足等式.
(1)求、、的值;
(2)判断以、、为边能否构成三角形?若能构成三角形,此三角形是什么形状的三角形?若不能,请说明理由;
15、(8分)《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,其中的一个比赛环节“飞花令”增加了节目悬念.新学期开学,某班组织了甲、乙两组同学进行了“飞花令”的对抗赛,规定说对一首得1分,比赛中有一方说出9首就结束两个人对抗,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
甲组:9,4,6,5,9,6,7,6,8,6,9,5,7,6,9
乙组:4,6,7,6,7,9,7,5,8,7,6,7,9,6,8
(1)请你根据所给的两组数据,绘制统计图(表).
(2)把下面的表格补充完整.
(3)根据第(2)题表中数据,你会支持哪一组,并说明理由.
16、(8分)已知一条直线AB经过点(1,4)和(-1,-2)
(1)求直线AB的解析式.
(2)求直线AB和直线CD:y=x+3的交点M的坐标.
17、(10分)在平面直角坐标系中,点.
(1)直接写出直线的解析式;
(2)如图1,过点的直线交轴于点,若,求的值;
(3)如图2,点从出发以每秒1个单位的速度沿方向运动,同时点从出发以每秒0.6个单位的速度沿方向运动,运动时间为秒(),过点作交轴于点,连接,是否存在满足条件的,使四边形为菱形,判断并说明理由.
18、(10分)如图,已知□ABCD.
(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC.(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD ≌ △EFC.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知双曲线经过点(-1,2),那么k的值等于_______.
20、(4分)小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.
21、(4分)点P(a,b)在第三象限,则直线y=ax+b不经过第_____象限
22、(4分)函数中自变量x的取值范围是_______.
23、(4分)如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线y=3x与反比例函数y=(k≠0)的图象交于A(1,m)和点B.
(1)求m,k的值,并直接写出点B的坐标;
(2)过点P(t,0)(-1≤t≤1)作x轴的垂线分别交直线y=3x与反比函数y=(k≠0)的图象于点E,F.
①当t=时,求线段EF的长;
②若0<EF≤8,请根据图象直接写出t的取值范围.
25、(10分)计算:+(π﹣3)0﹣()﹣1+|1﹣|
26、(12分)如图1.在边长为10的正方形中,点在边上移动(点不与点,重合),的垂直平分线分别交,于点,,将正方形沿所在直线折叠,则点的对应点为点,点落在点处,与交于点,
(1)若,求的长;
(2)随着点在边上位置的变化,的度数是否发生变化?若变化,请说明理由;若不变,请求出的度数;
(3)随着点在边上位置的变化,点在边上位置也发生变化,若点恰好为的中点(如图2),求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
观察可得最简公分母为(x﹣3),然后方程两边乘最简公分母,可以把分式方程转化为整式方程求解,注意要检验.
【详解】
解:最简公分母为(x﹣3),故①错误;
方程的两边同乘(x﹣3),得:x=2(x﹣3)+3,
即x=2x﹣6+3,
∴x﹣2x=﹣3,
即﹣x=﹣3,
解得:x=3,
检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.
则原分式方程无解.
故②③错误,④正确.
故选A.
此题考查了分式方程的解法.注意解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.注意解分式方程一定要验根.
2、A
【解析】分析:要求a²+a+3b的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可,注意计算不要出错.
详解:由题意知,a+b=2,x²=2x+1,即a²=2a+1,
∴a²+a+3b=2a+1+a+3b
=3(a +b)+1
=3×2+1
=1.
故选A.
点睛:主要考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.
3、C
【解析】
根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.
【详解】
一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
所以|k|-2=1,
解得:k=±2,
因为k-2≠0,所以k≠2,
即k=-2.
故选:C.
本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
4、C
【解析】
根据算术平方根的定义:正数的平方根有两个,它们为相反数,其中非负的平方根,就是这个数的算术平方根。.
【详解】
解:∵12=9,
∴9的算术平方根是1.
故选:C.
本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.
5、A
【解析】
由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.
【详解】
∵32+42=52,∴此三角形是直角三角形,
∴S△=×3×4=1.
故选:A.
本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.
6、D
【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
【详解】
如下图,连接BD,角AC于点E,
∵四边形ABCD为菱形,
∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
在Rt△AEB中, AE=3cm,
∴AB==3=2
故选D.
本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
7、C
【解析】
根据一次函数时,y随x的增大而减小,可得,的大小关系,再根据不等式的性质判断,与b的大小关系.
【详解】
∵一次函数中,
∴y随x的增大而减小
∵
∴
∵
∴
∴,
即,
∴
故选C.
本题考查一次函数的增减性,熟练掌握时,一次函数y随x的增大而减小是解题的关键.
8、B
【解析】
根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.
【详解】
由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,
∴AF=AB,EF=EB,
∵AD∥BC,
∴∠FAE=∠AEB,
∴∠AEB=∠BAE,
∴BA=BE,
∴BA=BE=AF=FE,
∴四边形ABEF是菱形,
∴AE⊥BF
∵BF=12,AB=10,
∴BO=BF=6
∴AO=
∴AE=2AO=16
故选B.
本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先根据一次函数判断出函数图象的增减性,再根据x1<x1进行判断即可.
【详解】
∵直线,k=-<0,
∴y随x的增大而减小,
又∵x1<x1,
∴y1>y1.
故答案为>.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
10、1
【解析】
根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.
【详解】
解:如图所示,有1个位置使之成为轴对称图形.
故答案为:1.
本题考查利用轴对称设计图案,关键是掌握轴对称图形沿某条直线折叠,直线两旁的部分能完全重合.
11、x≤1
【解析】
观察函数图形得到当x≤1时,一次函数y=ax+b的函数值小于2,即ax+b≤2
【详解】
解:根据题意得当x≤1时,ax+b≤2,
即不等式ax+b≤2的解集为:x≤1.
故答案为:x≤1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
13、1
【解析】
结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.
【详解】
解:∵甲出发到返回用时1小时,返回后速度不变,
∴返回到A地的时刻为x=2,此时y=120,
∴乙的速度为60千米/时,
设甲重新出发后的速度为v千米/时,列得方程:
(5﹣2)(v﹣60)=120,
解得:v=100,
设甲在第t小时到达B地,列得方程:
100(t﹣2)=10
解得:t=6,
∴此时乙行驶的路程为:60×6=360(千米),
乙离B地距离为:10﹣360=1(千米).
故答案为:1.
本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.
三、解答题(本大题共5个小题,共48分)
14、 (1) a=,b=5,c=;(2)可以构成三角形;直角三角形;理由见解析
【解析】
(1)根据二次根式的非负性解出a、b、c的值即可.
(2)根据勾股定理逆定理判断即可.
【详解】
(1) ,
由二次根式的非负性可知:a=,b=5,c=.
(2)∵a+b>c>b-a,满足三边关系,
∴a、b、c能构成三角形,
∵a2=7,b2=25,c2=32,可得a2+b2=c2,
∴三角形为直角三角形.
本题考查二次根式的非负性和勾股定理逆定理,关键在于熟练掌握相关性质.
15、(1)详见解析;(2)6.8;(3)答案不唯一,如:两组都支持,理由是:甲乙两组平均数一样.
【解析】
(1)根据题意可把数据整理成统计表;
(2)根据平均数和中位数的性质进行计算即可.
(3)根据比较平均数的大小,即可解答.
【详解】
(1)答案不唯一,如统计表
(2)甲组平均数: =6.8
乙组的中位数为:7.
(3)两组都支持,理由是:甲乙两组平均数一样.
此题考查统计表,平均数,中位数,解题关键在于看懂图中数据.
16、(1)y=3x+1;(2)M(1,4).
【解析】
分析:设直线解析式为y=kx+b,然后把两个点的坐标代入得到关于k、b的方程组,然后解方程组即可.
详解:(1)设直线解析式为y=kx+b,
把(1,4)和(-1,-2)分别代入得 ,解得 ,
所以直线解析式为y=3x+1.
(2)由题意得 ,解得:,∴M(1,4).
点睛:本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
17、(1);(2)或;(3)存在,
【解析】
(1)利用待定系数法可求直线AB解析式;
(2)分两种情况讨论,利用全等三角形的性质可求解;
(3)先求点D坐标,由勾股定理可得DN=AM=t,可证四边形AMDN是平行四边形,即当AM=AN时,四边形AMDN为菱形,列式可求t的值.
【详解】
(1)设直线AB解析式为:y=mx+n,
根据题意可得:,
∴,
∴直线AB解析式为;
(2)若点C在直线AB右侧,
如图1,过点A作AD⊥AB,交BC的延长线于点D,过点D作DE⊥AC于E,
∵∠ABC=45°,AD⊥AB,
∴∠ADB=∠ABC=45°,
∴AD=AB,
∵∠BAO+∠DAC=90°,且∠BAO+∠ABO=90°,
∴∠ABO=∠DAC,AB=AD,∠AOB=∠AED=90,
∴△ABO≌△DAE(AAS),
∴AO=DE=3,BO=AE=4,
∴OE=1,
∴点D(1,-3),
∵直线y=kx+b过点D(1,-3),B(0,4).
∴,
∴k=-7,
若点C在点A右侧时,如图2,
同理可得,
综上所述:k=-7或.
(3)设直线DN的解析式为:y=x+n,且过点N(-0.6t,0),
∴0=-0.8t+n,
∴n=0.8t,
∴点D坐标(0,0.8t),且过点N(-0.6t,0),
∴OD=0.8t,ON=0.6t,
∴DN==1,
∴DN=AM=1,且DN∥AM,
∴四边形AMDN为平行四边形,
当AN=AM时,四边形AMDN为菱形,
∵AN=AM,
∴t=3-0.6t,
∴t=,
∴当t=时,四边形AMDN为菱形.
本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,菱形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
18、(1)作图解析;(2)证明见解析.
【解析】
(1)根据题目要求画出图形即可.
(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.
【详解】
(1)如图所示:
(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC
∵BC=CE,
∴AD=CE
∵AD∥BC,
∴∠DAF=∠CEF
在△ADF和△ECF中,
∵ ,
∴△ADF≌△ECF(AAS)
本题主要考查尺规作图以及全等三角形的证明、平行四边形的性质,熟练掌握全等三角形证明方法是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.
20、1
【解析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.
【详解】
解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);
1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),
∴众数与中位数的和是:150+150=1(度).
故答案为1.
本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.
21、一
【解析】
点在第三象限的条件是:横坐标为负数,纵坐标为负数.进而判断相应的直线经过的象限
【详解】
解:∵点P(a,b)在第三象限,
∴a<0,b<0,
∴直线y=ax+b经过第二、三、四象限,不经过第一象限,
故答案为:一.
此题主要考查四个象限的点坐标特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.掌握直线经过象限的特征即可求解
22、x≥-3
【解析】
根据被开方数必须大于或等于0可得:3+x≥0,解不等式即可.
【详解】
因为要使有意义,
所以3+x≥0,
所以x≥-3.
故答案是:x≥-3.
本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.
23、x<1
【解析】
分析:
根据图象和点A的坐标找到直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围即可.
详解:
由图象可知,直线y=bx在直线y=ax+4下方部分所对应的图象在点A的左侧,
∵点A的坐标为(1,3),
∴不等式bx<ax+4的解集为:x
相关试卷
这是一份北京市师范大附属中学2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市海淀中学2025届九年级数学第一学期开学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市海淀区第四中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。