![安徽省合肥市五十中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16250048/0-1728882903853/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省合肥市五十中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16250048/0-1728882903947/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省合肥市五十中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16250048/0-1728882903987/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省合肥市五十中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份安徽省合肥市五十中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为( )
A.B.C.D.
2、(4分)函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是( )
A.中位数是40B.众数是4C.平均数是20.5D.极差是3
4、(4分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是( )
A.x2-3x+2=0B.x2+3x+2=0C.x2+3x-2=0D.x2-2x+3=0
5、(4分)如图,平行四边形ABCD中,∠B=60°,AB⊥AC,AC的垂直平分线交AD于点E,△CDE的周长是15,则平行四边形ABCD的面积为( )
A.B.40C.50D.
6、(4分)若关于的分式方程有增根,则的值是( ).
A.B.
C.D.或
7、(4分)一个多边形的每个内角都等于108°,则这个多边形的边数为( ).
A.5B.6C.7D.8
8、(4分)下列关于直线的说法正确的是( )
A.经过第一、二、四象限B.与轴交于点
C.随的增大而减小D.与轴交于点
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出
①AB=__________;
②CD=_______________(提示:过A作CD的垂线);
③BC=_______________.
10、(4分)已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是 .
11、(4分)如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是_____.
12、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
13、(4分)两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组教据合并为一组,用这组新数据的中位为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD为平行四边形,的平分线AE交CD于点F交BC的延长线于点E.
(1)求证:;
(2)连接BF、AC、DE,当时,求证:四边形ACED是平行四边形.
15、(8分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
16、(8分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:,)
17、(10分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.
18、(10分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为多少;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)点P(﹣3,4)到x轴和y轴的距离分别是_____.
20、(4分)如图,已知是矩形内一点,且,,,那么的长为________.
21、(4分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.
22、(4分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。
23、(4分)如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF
(1)填空∠B=_______°;
(2)求证:四边形AECF是矩形.
25、(10分)已知x=﹣1,y=+1,求x2+xy+y2的值.
26、(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3),B(﹣3,1),C(﹣1,3).
(1)请按下列要求画图:
①平移△ABC,使点A的对应点A1的坐标为(﹣4,﹣3),请画出平移后的△A1B1C1;
②△A1B1C1与△ABC关于原点O中心对称,画出△A1B1C1.
(1)若将△A1B1C1绕点M旋转可得到△A1B1C1,请直接写出旋转中心M点的坐标 .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据函数图像分析即可解题.
【详解】
由函数图像可知一次函数单调递减,正比例函数单调递增,
将(k-m)x+b<0变形,即kx+b<mx,
对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,
∵点P的横坐标为1,
∴即为所求解集.故选B
本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度, 将不等式问题转化为图像问题是解题关键,
2、B
【解析】
根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.
【详解】
解:一次函数y=x﹣2,
∵k=1>0,
∴函数图象经过第一三象限,
∵b=﹣2<0,
∴函数图象与y轴负半轴相交,
∴函数图象经过第一三四象限,不经过第二象限.
故选B.
3、A
【解析】
试题分析:根据中位数、众数、加权平均数和极差的定义和计算公式分别对每一项进行分析,即可得出答案.A、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;D、这组数据的极差是:60﹣25=35,故本选项错误;故选A.
考点:1.极差;2.加权平均数;3.中位数;4.众数.
4、A
【解析】
先计算出x1+x2=3,x1x2=2,然后根据根与系数的关系得到满足条件的方程可为x2-3x+2=1.
【详解】
解:∵x1=1,x2=2,
∴x1+x2=3,x1x2=2,
∴以x1,x2为根的一元二次方程可为x2-3x+2=1.
故选A.
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=−,x1x2=.
5、D
【解析】
首先证明AD+CD=15,再证明AD=2CD,推出CD=5,AD=10,利用勾股定理求出AC即可解決问题;
【详解】
∵点E在AC的垂直平分线上
∴EA=EC
∴△CDB的周长=CD+DE+EC=CD+DE+EA=CD+DA=15
∵四边形ABCD是平行四边形
∴∠B=∠D=60°,AB∥CD
∵AB⊥AC,
∴AC⊥CD
∴∠ACD=90°
∴∠CAD=30°
∴AD=2CD
∴CD=5,AD=10
∴AC=
S =2S△ADC=2×5×5=25
故选D
此题考查平行四边形的性质和勾股定理,解题关键在于先证明AD+CD=15,再证明AD=2CD
6、A
【解析】
方程两边都乘以最简公分母(x-3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.
【详解】
方程两边都乘以(x−3)得,
2−x−m=2(x−3),
∵分式方程有增根,
∴x−3=0,
解得x=3,
∴2−3−m=2(3−3),
解得m=−1.
故选A.
7、A
【解析】
试题分析:设这个多边形边数为n,则根据题意得:(n-2)×180°=108n,解得:72n=360,所以n=1.故本题选A.
考点:多边形内角和公式.
8、D
【解析】
直接根据一次函数的性质即可解答
【详解】
A. 直线y=2x−5经过第一、三、四象限,错误;
B. 直线y=2x−5与x轴交于(,0),错误;
C. 直线y=2x−5,y随x的增大而增大,错误;
D. 直线y=2x−5与y轴交于(0,−5),正确
故选:D.
此题考查一次函数的性质,解题关键在于掌握其性质
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1 6 2
【解析】
根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.
【详解】
①当t=1时,点P到达A处,即AB=1.
故答案是:1;
②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
∵AC=AD,
∴DE=CE=,
∴CD=6,
故答案是:6;
③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,
则BC=2,
故答案是:2.
考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.
10、
【解析】
解:如图,取AB的中点D,连接OD、CD,
∵正三角形ABC的边长为a,
,
在△ODC中,OD+CD>OC,
∴当O、D、C三点共线时OC最长,
最大值为.
11、(﹣1,﹣2) .
【解析】
1、本题主要考查的是方格纸中已知一点后直角坐标系的建立:先确定单位长度,再根据已知点的坐标确立原点,然后分别确定x轴和y轴.
2、本题中只要确立了直角坐标系,点B的坐标就可以很快求出.
【详解】
由题意及点A的坐标可确定如图所示的直角坐标系,
则B点和A点关于原点对称,所以点B的坐标是(-1,-2).
本题考查了建立直角坐标系,牢牢掌握该法是解答本题的关键.
12、2
【解析】
解:这组数据的平均数为2,
有 (2+2+0-2+x+2)=2,
可求得x=2.
将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
其平均数即中位数是(2+2)÷2=2.
故答案是:2.
13、1
【解析】
首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.
【详解】
∵两组数据:3,a,8,5与a,1,b的平均数都是1,
∴,
解得,
若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,
一共7个数,第四个数是1,所以这组数据的中位数是1.
故答案为1.
本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)详见解析.
【解析】
(1)由平行四边形的性质可得AD∥BC,AB∥CD,AB=CD,即可得∠AEB=∠DAE,由AE是∠BAD的平分线,根据角平分线的定义可得∠BAE=∠DAE,所以∠BAE=∠AEB,即可判定AB=BE,由此即可证得结论;(2)已知AB=BE,BF⊥AE,由等腰三角形三线合一的性质可得AF=EF,再证明△ADF≌△ECF,根据全等三角形的性质可得CF=DF,由对角线互相平分的四边形为平行四边形即可判定四边形ACED是平行四边形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AB=CD,
∴∠AEB=∠DAE,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD;
(2)∵AB=BE,BF⊥AE,
∴AF=EF,
∵AD∥BC,
∴∠ADF=∠ECF,∠DAF=∠AEC,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴CF=DF,
∵AF=EF,CF=DF,
∴四边形ACED是平行四边形.
本题考查了平行四边形的性质与判定,熟练运用平行四边形的性质定理及判定定理是解决问题的关键.
15、解:(1)见解析
(2)A;90;
(3)50
【解析】
试题分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF.
(2)∵△ADE≌△ABF,∴∠BAF=∠DAE.
而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°.
∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到.
(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
【详解】
解:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°.
又∵点F是CB延长线上的点,∴∠ABF=90°.
在△ADE和△ABF中,∵,
∴△ADE≌△ABF(SAS).
(2)A;90.
(3)∵BC=8,∴AD=8.
在Rt△ADE中,DE=6,AD=8,∴.
∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
∴AE=AF,∠EAF=90°.
∴△AEF的面积=AE2=×100=50(平方单位).
16、船向岸边移动了大约3.3m.
【解析】
由题意可求出CD长,在中分别用勾股定理求出AD,AB长,作差即可.
【详解】
解:∵在中,,,,
∴.
∵此人以0.5m/s的速度收绳,6s后船移动到点D的位置,
∴.
∴.
∴.
答:船向岸边移动了大约3.3m.
本题是勾股定理的应用,灵活运用勾股定理求线段长是解题的关键,
17、证明见解析.
【解析】
连接BD交AC于O,根据平行四边形性质得出,,根据平行线性质得出,根据AAS证≌,推出,根据平行四边形的判定推出即可.
【详解】
连接BD交AC于O,
四边形ABCD是平行四边形,
,,
,
,
在和中,
,
≌,
,
,
四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定,平行线的性质,对顶角相等,全等三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
18、(1)享受9折优惠的概率为;(2)顾客享受8折优惠的概率为.
【解析】
(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;
(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.
【详解】
(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,
∴享受9折优惠的概率为;
(2)画树状图如下:
由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,
所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.
本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4;1.
【解析】
首先画出坐标系,确定P点位置,根据坐标系可得答案.
【详解】
点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.
故答案为:4;1.
本题考查了点的坐标,关键是正确确定P点位置.
20、
【解析】
过O作EF⊥AD于E,交BC于F;过O作GH⊥DC于G,交AB于H,设CF=x,FB=y,AH=s,HB=t,则可得x2-y2=16-9=7,t2-s2=32-12=8,整理得OD2=x2+s2=(y2+t2)-1=9-1=8,即可求得AD的长.
【详解】
如图,过O作EF⊥AD于E,交BC于F;过O作GH⊥DC于G,交AB于H.
设CF=x,FB=y,AH=s,HB=t,
∴OG=x,DG=s,
∴OF2=OB2-BF2=OC2-CF2,
即42-x2=32-y2,
∴x2-y2=16-9=7①
同理:OH2=12-s2=32-t2
∴t2-s2=32-12=8②
又∵OH2+HB2=OB2,即y2+t2=9;
①-②得(x2+s2)-(y2+t2)=-1,
∴OD2=x2+s2=(y2+t2)-1=9-1=8,
∴OD=2.
故答案为2.
本题考查了矩形对角线相等且互相平分的性质,考查了勾股定理在直角三角形中的运用,本题中整理计算OD的长度是解题的关键.
21、22.1
【解析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,
∴这组数据为11,20,21,25,29,
∴平均数=(11+20+21+25+29)÷5=22.1.
故答案是:22.1.
【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
22、36
【解析】
连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.
【详解】
连接AC,如图所示:
∵∠B=90°,
∴△ABC为直角三角形,
又∵AB=3,BC=4,
∴根据勾股定理得:AC= =5,
又∵CD=12,AD=13,
∴AD=13=169,CD+AC=12+5=144+25=169,
∴CD+AC=AD,
∴△ACD为直角三角形,∠ACD=90°,
则S四边形ABCD=S△ABC+S△ACD= AB⋅BC+AC⋅CD=×3×4+×5×12=36,
故四边形ABCD的面积是36
此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线
23、1.
【解析】
根据平行四边形的判定定理得到四边形HPFD、四边形PGCF是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、四边形PGCF是平行四边形,
∵S△APH=2,CG=2BG,
∴S△DPH=2S△APH=4,
∴平行四边形HPFD的面积=1,
∴平行四边形PGCF的面积=×平行四边形HPFD的面积=4,
∴S四边形PGCD=4+4=1,
故答案为1.
本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)60;(2)见解析
【解析】
分析:(1)根据菱形的性质可得AB=BC,然后根据AB=AC,可得△ABC为等边三角形,继而可得出∠B=60°;
(2)根据△ABC为等边三角形,同理得出△ACD为等边三角形,然后根据E、F分别是BC、AD的中点,可得AE⊥BC,CF⊥AD,然后根据AF∥CE,即可判定四边形AECF为矩形.
详解:(1)(1)因为四边形ABCD为菱形,
∴AB=BC,
∵AC=AB,
∴△ABC为等边三角形,
∴∠B=60°,;
(2)证明:
∵四边形ABCD是菱形,
∴AD=BC,AD∥BC,
∵E.F分别是BC.AD的中点,
∴CE=BC,AF=AD,
∴AF=CE,
∴四边形AECF是平行四边形,
∵AB=AC,E是BC的中点,
∴AE⊥BC,即∠AEC=90°,
∴ 四边形AECF是矩形.
点睛:本题考查了菱形的性质,等边三角形的判定与性质,矩形的判定,解答本题的关键是掌握菱形的四条边都相等的性质,注意掌握矩形的判定:有一个角是直角的平行四边形是矩形.
25、1
【解析】
根据x、y的值,可以求得题目中所求式子的值.
【详解】
解:∵x=﹣1,y=+1,
∴x+y=2,xy=2,
∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣2=12﹣2=1.
本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
26、(1)①见解析②见解析(1)(0,﹣3)
【解析】
(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;
②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可;
(1)连接B1B1,C1C1,交点就是旋转中心M.
【详解】
(1)①如图所示,△A1B1C1即为所求;
②如图所示,△A1B1C1即为所求;
(1)如图,连接C1C1,B1B1,交于点M,则△A1B1C1绕点M旋转180°可得到△A1B1C1,
∴旋转中心M点的坐标为(0,﹣3),
故答案为(0,﹣3).
本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
题号
一
二
三
四
五
总分
得分
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
相关试卷
这是一份安徽省合肥市中学国科技大附中2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年辽宁省抚顺市五十中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)