2025届四川省金堂县土桥中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份2025届四川省金堂县土桥中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知:等边三角形的边长为6cm,则一边上的高为( )
A.B.2C.3D.
2、(4分)下列因式分解错误的是( )
A.B.
C.D.
3、(4分)中两条边的长分别为,,则第三边的长为( )
A.B.C.或D.无法确定
4、(4分)函数y=中自变量x的取值范围是( )
A.x≥-1且x≠1B.x≥-1C.x≠1D.-1≤x<1
5、(4分)下面哪个点在函数y=2x+4的图象上( )
A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)
6、(4分)方程x(x+1)=x+1的解是( )
A.x1=0,x2=-1 B.x = 1 C.x1 = x2 = 1 D.x1 = 1,x2=-1
7、(4分)将直线向下平移个单位后所得直线的解析式为( )
A.B.C.D.
8、(4分)下列各式:,,+y,,,其中分式共有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)因式分解:_________.
10、(4分)如图,在中,已知,,平分,交边于点E,则 ___________ .
11、(4分)已知等腰三角形的两条中位线的长分别为2和3,则此等腰三角形的周长为_____.
12、(4分)计算______.
13、(4分)当x_____时,分式有意义.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校八年级共有四个班,人数分别为:人,有一次数学测试,每个班同学的平均成绩分别为:分、分、分、分。
(1)求这次数学测试的全年级平均成绩;
(2)若所有学生的原测试成绩的方差为。后来发现有一道分题,所有同学都不得分,是题错了,老师只好在每位同学的原成绩上加上分,那么现在全年级的平均成绩和这些成绩数据的方差各是多少?
(3)其中八(1)班人的平均分66分,测试成绩的中位数也恰好,且成绩是分的只有一人,每个同学的测试成绩都是整数,那么八(1)班所有同学的测试成绩的方差不会小于哪个数?
15、(8分)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.
16、(8分)某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.
17、(10分)有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球,
(1)用树形图或列表法展现可能出现的所有结果;
(2)求摸到一个红球和一个白球的概率.
18、(10分) “中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.
根据以上信息回答下列问题:
(1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数x在 范围的人数最多;
(2)补全频数分布直方图;
(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.
20、(4分)已知函数,则自变量x的取值范围是___________________.
21、(4分)直线y=3x-2不经过第________________象限.
22、(4分)现有两根木棒的长度分别是4 米和3 米,若要钉成一个直角三角形木架,则第三根木棒的长度为_________米.
23、(4分)在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:
老师说:“小楠、小曼的作法都正确”
请回答:小楠的作图依据是______;
小曼的作图依据是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,
(1)证明:CF=EB.
(2)证明:AB=AF+2EB.
25、(10分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货;
方案B:每千克5元,客户需支付运费2 000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20 000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
26、(12分)在△ABC中,∠C=90°,AB=20,若∠A=60°,求BC,AC的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据等边三角形的性质三线合一求出BD的长,再利用勾股定理可求高.
【详解】
如图,AD是等边三角形ABC的高,
根据等边三角形三线合一可知BD=BC=3,
∴它的高AD==,
故选:C.
本题考查等边三角形的性质及勾股定理,较为简单,解题的关键是掌握勾股定理.直角三角形两条直角边的平方和等于斜边的平方.
2、B
【解析】
依次对各选项进行因式分解,再进行判断.
【详解】
A.选项:,故因式分解正确,不符合题意;
B.选项:,故因式分解不正确,符合题意;
C.选项:,故因式分解正确,不符合题意;
D.选项:,故因式分解正确,不符合题意;
故选:B.
考查了提取公因式法以及公式法分解因式等知识,熟练利用公式分解因式是解题关键.
3、C
【解析】
分b是直角边、b是斜边两种情况,根据勾股定理计算.
【详解】
解:当b是直角边时,斜边c==,
当b是斜边时,直角边c==,
则第三边c的长为和,
故选:C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
4、A
【解析】
分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.
详解:根据题意得到:,
解得x≥-1且x≠1,
故选A.
点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.
5、D
【解析】
将四个选项中的点分别代入解析式,成立者即为函数图象上的点.
【详解】
A、将(2,1)代入解析式y=2x+4得,2×2+4=8≠1,故本选项错误;
B、将(-2,1)代入解析式y=2x+4得,2×(-2)+4=0≠1,故本选项错误;
C、将(2,0)代入解析式y=2x+1得,2×2+4=8≠0,故本选项错误;
D、将(-2,0)代入解析式y=2x+1得,2×(-2)+4=0,故本选项正确;
故选D.
本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.
6、D
【解析】【分析】移项后,利用因式分解法进行求解即可得.
【详解】x(x+1)=x+1,
x(x+1)-(x+1)=0,
(x+1)(x-1)=0,
x1 = 1,x2=-1,
故选D.
【点睛】本题考查了解一元二次方程,根据方程的特点熟练选取恰当的方法进行求解是关键.
7、D
【解析】
只向下平移,让比例系数不变,常数项减去平移的单位即可.
【详解】
直线向下平移个单位后所得直线的解析式为
故选:D
本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.
8、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式.利用这点进行解题即可.
【详解】
在,,,,,中是分式的有:,,故B正确.
本题考查的是分式的定义,解题的关键是找到分母中含有字母的式子,同时一定要注意π不是字母.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
直接提取公因式即可.
【详解】
.
故答案为:.
本题考查了因式分解——提取公因式法,掌握知识点是解题关键.
10、1
【解析】
由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.
【详解】
解:中,AD//BC,
平分
故答案为1.
本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
11、14或1
【解析】
因为三角形中位线的长度是相对应边长的一半,所以此三角形有一条边为4,一条为6;那么就有两种情况,或腰为4,或腰为6,再分别去求三角形的周长.
【详解】
解:∵等腰三角形的两条中位线长分别为2和3,
∴等腰三角形的两边长为4,6,
当腰为6时,则三边长为6,6,4;周长为1;
当腰为4时,则三边长为4,4,6;周长为14;
故答案为:14或1.
此题涉及到三角形中位线与其三边的关系,解答此题时要注意分类讨论,不要漏解.
12、
【解析】
先进行二次根式的化简,然后合并.
【详解】
解:原式.
故答案为:.
本题考查了二次根式的加减法,正确化简二次根式是解题的关键.
13、≠.
【解析】
要使分式有意义,分式的分母不能为1.
【详解】
因为4x+5≠1,所以x≠-.
故答案为≠−.
解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.
三、解答题(本大题共5个小题,共48分)
14、(1)65.99分;(2)全年级的平均成绩为68.99分,这些成绩数据的方差为25;(3)方差不会小于.
【解析】
(1)利用平均数的计算公式计算;
(2)根据平均数的性质、方差的性质解答;
(3)根据方差的性质得到符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,根据方差的计算公式计算即可.
【详解】
(1)全年级平均成绩=≈65.99(分);
(2)每位同学的原成绩上加上3分,
全年级的平均成绩为65.99+3=68.99(分),
这些成绩数据的方差为25;
(3)∵所有数据越接近平均数,方差越小,且平均数只有一个,
∴符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,
S2=×[20×(-1)2+0+20×12]=,
则八(1)班所有同学的测试成绩的方差不会小于.
本题考查的是方差、平均数、中位数的概念和计算,掌握平均数的计算公式、方差的计算公式、中位数的概念和性质是解题的关键.
15、(1)30元,32元(2)(3)当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;当购买数量为30个时,购买两种品牌的计算机花费相同;当购买数量超过30个时,购买B品牌的计算机更合算.
【解析】
(1)根据“购买2个A品牌和3个B品牌的计算器共需156元”和“购买3个A品牌和1个B品牌的计算器共需122元”列方程组求解即可.
(2)根据题意分别列出函数关系式.
(3)由、、列式作出判断.
【详解】
解:(1)设A品牌计算机的单价为x元,B品牌计算机的单价为y元,则由题意可知:
,解得.
答:A,B两种品牌计算机的单价分别为30元,32元.
(2)由题意可知:,即.
当时,;
当时,,即.
(3)当购买数量超过5个时,.
①当时,,解得,
即当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;
②当时,,解得,
即当购买数量为30个时,购买两种品牌的计算机花费相同;
③当时,,解得,
即当购买数量超过30个时,购买B品牌的计算机更合算.
16、1元
【解析】
首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.
【详解】
解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:,解方程,得x=1.
经检验:x=1是原方程的根,且符合题意.
答:跳绳的单价是1元.
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
17、(1)见解析;(2)
【解析】
(1)按照树状图的画法画出树状图即可;
(2)根据树状图得出摸到一红一白的概率.
【详解】
(1)树状图如下:
(2)根据树状图得:
共有12种情况,其中恰好1红1白的情况有5种
故概率P=
本题考查利用树状图求概率,注意,本题还可用列表法求概率,应熟练掌握这两种方法.
18、(1)50,;(2)见解析(3)被调查学生听写正确的汉字个数的平均数是23个.(4)810人
【解析】
由统计图表可知:(1)抽取的学生总数是10÷1%,听写正确的汉字个数21≤x<31范围内的人数最多;(2)先求出11≤x<21一组的人数和21≤x<31一组的人数,再画统计图;(3)根据: ;(4)良好学生数:
【详解】
(1)抽取的学生总数是10÷1%=50(人),听写正确的汉字个数21≤x<31范围内的人数最多,
故答案是:50,21≤x<31;
(2)11≤x<21一组的人数是:50×30%=15(人),
21≤x<31一组的人数是:50﹣5﹣15﹣10=1.
;
(3)=23(个).
答:被调查学生听写正确的汉字个数的平均数是23个.
(4)=810(人).
答:估计该校本次“汉字听写”比赛达到良好的学生人数约为810人.
本题考核知识点:统计初步. 解题关键点:从统计图表获取信息,用样本估计总体.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4cm
【解析】
根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,OD=OB,
又∵AC=10cm,BD=6cm,
∴AO=5cm,DO=3cm,
本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.
20、
【解析】
分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.
详解:由题意可得
解得x≥-2且x≠3.
故答案为:x≥-2且x≠3.
点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.
21、二
【解析】
根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
【详解】
解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
∴这条直线一定不经过第二象限.
故答案为:二
此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
22、.
【解析】
题目中没有明确直角边和斜边,故要分情况讨论,再根据勾股定理求解即可.
【详解】
解:当第三根木棒为直角边时,长度
当第三根木棒为斜边时,长度
故第三根木棒的长度为米.
故答案为:.
本题考查勾股定理的应用,分类讨论问题是初中数学的重点,在中考中比较常见,不重不漏的进行分类是解题的关键.
23、同位角相等,两直线平行或垂直于同一直线的两条直线平行 内错角相等,两直线平行
【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.
【详解】
解:∵∠B=∠D=90°,
∴AB//CD(同位角相等,两直线平行);
∵∠ABC=∠DCB=90°,
∴AB//CD(内错角相等,两直线平行),
故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.
本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;
(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.
【详解】
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DC=DE.
在Rt△ADC与Rt△ADE中,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
本题主要考查角平分线的性质、全等三角形的判定和性质,角平分线上的点到角两边的距离相等,斜边和一直角边对应相等的两个直角三角形全等,掌握这两个知识点是解题的关键.
25、 (1)方案A:y=5.8x;方案B:y=5x+2 000(2)选用方案A比方案B付款少(3) B
【解析】
试题分析:(1)根据数量关系列出函数表达式即可;(2)先求出方案A应付款y与购买量x的函数关系为,方案B 应付款y与购买量x的函数关系为,然后分段求出哪种方案付款少即可;(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.
试题解析:(1)方案A:函数表达式为.
方案B:函数表达式为
(2)由题意,得.
解不等式,得x<2500
∴当购买量x的取值范围为时,选用方案A比方案B付款少.
(3)他应选择方案B.
考点: 一次函数的应用
26、
【解析】
由已知可得,∠B=30°,根据30°角直角三角形的性质可得AC=10,再由勾股定理即可求得BC的长.
【详解】
解:∵∠C=90°,∠A=60°,
∴∠B=180°-∠C-∠A=180°-90°-60°=30°.
∴AC=AB=×20=10.
在Rt△ABC中,由勾股定理得BC===10.
本题考查勾股定理.熟记定理是关键.
题号
一
二
三
四
五
总分
得分
听写正确的汉字个数x
组中值
1≤x<11
6
11≤x<21
16
21≤x<31
26
31≤x<41
36
相关试卷
这是一份2025届江苏省盐城市獐沟中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南京六中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省淮安市凌桥乡初级中学数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。