搜索
    上传资料 赚现金
    英语朗读宝

    2025届山东省枣庄市名校九年级数学第一学期开学监测模拟试题【含答案】

    2025届山东省枣庄市名校九年级数学第一学期开学监测模拟试题【含答案】第1页
    2025届山东省枣庄市名校九年级数学第一学期开学监测模拟试题【含答案】第2页
    2025届山东省枣庄市名校九年级数学第一学期开学监测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省枣庄市名校九年级数学第一学期开学监测模拟试题【含答案】

    展开

    这是一份2025届山东省枣庄市名校九年级数学第一学期开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列计算结果正确的是
    A.B.C.D.
    2、(4分)王师傅驾车到某地办事,汽车出发前油箱中有50升油.王师傅的车每小时耗油12升,行驶3小时后,他在一高速公路服务站先停车加油26升,再吃饭、休息,此过程共耗时1小时,然后他继续行驶,下列图象大致反映油箱中剩余油量y(升)与行驶时间t(小时)之间的函数关系的是( )
    A.B.
    C.D.
    3、(4分)如图,数轴上表示一个不等式的解集是( )
    A.B.C.D.
    4、(4分)下列各式中,能用公式法分解因式的是( )
    ①; ②; ③; ④; ⑤
    A.2个B.3个C.4个D.5个
    5、(4分)九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为( )
    A.16,16B.10,16C.8,8D.8,16
    6、(4分)如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为( )
    A.5cmB.10cmC.20cmD.40cm
    7、(4分)方程的解是
    A.B.C.或D.或
    8、(4分)在同一平面直角坐标系中,函数与的图象可能是( )
    A. B.
    C. D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,在菱形纸片ABCD中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:
    第一步:如图①,将菱形纸片ABCD折叠,使点A的对应点A′恰好落在边CD上,折痕EF分别与边AD、AB交于点E、F,折痕EF与对应点A、A′的连线交于点G.
    第二步:如图②,再将四边形纸片BCA′F折叠使点C的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N.
    第三步:展开菱形纸片ABCD,连接GC′,则GC′最小值是_____.
    10、(4分)如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.
    11、(4分)计算:________.
    12、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
    13、(4分)样本容量为 80,共分为六组,前四个组的频数分别为 12,13,15,16,第五组的频率 是 0.1,那么第六组的频率是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:+
    15、(8分)某校九年级有1200名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
    (Ⅰ)本次参加跳绳测试的学生人数为___________,图①中的值为___________;
    (Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
    (Ⅲ)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?
    16、(8分)已知a,b分别是6的整数部分和小数部分.
    (1)求a,b的值;
    (2)求3ab2的值.
    17、(10分)已知在△ABC中,AB=1,BC=4,CA=.
    (1)分别化简4,的值.
    (2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为1).
    (3)求出△ABC的面积.
    18、(10分)近几年,随着电子产品的广泛应用,学生的近视发生率出现低龄化趋势,引起了相关部门的重视.某区为了了解在校学生的近视低龄化情况,对本区7-18岁在校近视学生进行了简单的随机抽样调查,并绘制了以下两幅不完整的统计图.
    请根据图中信息,回答下列问题:
    (1)这次抽样调查中共调查了近视学生 人;
    (2)请补全条形统计图;
    (3)扇形统计图中10-12岁部分的圆心角的度数是 ;
    (4)据统计,该区7-18岁在校学生近视人数约为10万,请估计其中7-12岁的近视学生人数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.
    20、(4分)如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=________.
    21、(4分)我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.
    ①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.
    则正确的排序为________ (填序号)
    22、(4分)在中,若∠A=38°,则∠C=____________
    23、(4分)将直线y=2x+3向下平移2个单位,得直线_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一次函数的图象经过和两点.
    (1)求一次函数的解析式.
    (2)当时,求的值.
    25、(10分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.
    (1)请补全下表:
    (2)填空:
    由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出.
    (3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
    26、(12分)某中学九年级开展“社会主义核心价值观”演讲比赛活动,九(1)班、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出5名选手的复赛成绩(满分100分)如图所示.
    根据图中数据解决下列问题:
    (1)九(1)班复赛成绩的众数是 分,九(2)班复赛成绩的中位数是 分;
    (2)请你求出九(1)班和九(2)班复赛的平均成绩和方差,并说明哪个班的成绩更稳定.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据二次根式的运算法则进行分析.
    【详解】
    A. ,不是同类二次根式,不能合并,本选项错误;
    B. ,本选项错误;
    C. ,本选项正确;
    D. ,本选项错误.
    故选C
    本题考核知识点:二次根式运算. 解题关键点:理解二次根式运算法则.
    2、D
    【解析】
    找准几个关键点,3小时后的油量、然后加油、吃饭、休息这1小时后油量增多26升、然后油量再下降.
    【详解】
    根据题意可得:油量先下降到14升,然后加油,油量上升,加油、吃饭、休息的这一小时,油量不减少,然后开始行驶,油量降低.
    故选D.
    本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
    3、C
    【解析】
    根据在数轴上表示不等式解集的方法解答即可.
    【详解】
    ∵-1处是空心圆圈,且折线向右,
    ∴这个不等式的解集是x>-1.
    故选:C.
    考查的是在数轴上表示不等式的解集.在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.
    4、B
    【解析】
    根据各个多项式的特点,结合平方差公式及完全平方公式即可解答.
    【详解】
    ①不能运用公式法分解因式;②能运用平方差公式分解因式;③不能运用公式法分解因式;④能运用完全平方公式分解因式;⑤能运用完全平方公式分解因式.
    综上,能用公式法分解因式的有②④⑤,共3个.
    故选B.
    本题考查了运用公式法分解因式,熟练运用平方差公式及完全平方公式分解因式是解题的关键.
    5、D
    【解析】
    根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.
    【详解】
    解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
    故选:D.
    本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.
    6、D
    【解析】
    根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,AO=OC,
    ∵AM=BM,
    ∴BC=2MO=2×5cm=10cm,
    即AB=BC=CD=AD=10cm,
    即菱形ABCD的周长为40cm,
    故选D.
    本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.
    7、C
    【解析】
    方程移项后,利用因式分解法求出解即可.
    【详解】
    解:(x-2)2=3(x-2),
    (x-2)2-3(x-2)=0,
    (x-2)(x-2-3)=0,
    x-2=0,x-2-3=0,
    x1=2,x2=1.
    故选C.
    本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.
    8、C
    【解析】
    根据一次函数及二次函数的图像性质,逐一进行判断.
    【详解】
    解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;
    B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;
    C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴在y轴右侧,故此选项正确;
    D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;
    故选:C.
    本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    注意到G为AA'的中点,于是可知G点的高度终为菱形高度的一半,同时注意到G在∠AFA'的角平分线上,因此作GH⊥AB于H,GP⊥A'F于P,则GP=GH,根据垂线段最短原理可知GH就是所求最小值.
    【详解】
    解:如图,作GH⊥AB于H,DR⊥AB于R,GP⊥A'F于P,A'Q⊥AB于Q.
    ∵四边形ABCD是菱形,
    ∴DA=AB=BC=CD=4,AB∥CD,
    ∴A'Q=DR,
    ∵∠BAD=60°,
    ∴A'Q=DR=AD=2,
    ∵A'与A关于EF对称,
    ∴EF垂直平分AA',
    ∴AG=A'G,∠AFE=∠A'FE,
    ∴GP=PH,
    又∵GH⊥AB,A'Q⊥AB
    ∴GH∥A'B,
    ∴GH=A'Q=DR=,
    所以GC'≥GP=,当且仅当C'与P重合时,GC'取得最小值.
    故答案为:.
    熟练掌握菱形的性质,折叠的性质,及最短路径确定的方法,是解题的关键.
    10、150
    【解析】
    根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB 和∠DEC,进而利用∠AED=360°-∠AEB -∠DEC -∠BEC即可求出∠AED的度数.
    【详解】
    解:∵四边形ABCD是正方形,△EBC是等边三角形,
    ∴AB=BC=BE,EC=BC=DC, ∠ABE=∠DCE=90°-60°=30°,
    ∴∠AEB=∠EAB=(180°-30°)÷2=75°,
    ∴∠DEC=∠EDC=(180°-30°)÷2=75°,
    ∴∠AED=360°-∠AEB -∠DEC -∠BEC =360°-75°-75°-60°=150°.
    故答案为:150°.
    本题考查正方形的性质以及等腰、等边三角形的性质,熟练掌握相关的性质是解题的关键.
    11、
    【解析】
    原式化简后,合并即可得到结果.
    【详解】
    解:原式= ,
    故答案为:.
    此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.
    12、
    【解析】
    由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
    【详解】
    ∵1160°÷180°=6…80°,
    又∵100°+80°=180°,
    ∴这个内角度数为100°,
    故答案为:100°.
    本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
    13、0.2.
    【解析】
    首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.
    【详解】
    解:根据题意得:第一组到第四组的频率之和是,又因为第五组的频率是 0.1,所以第六组的频率是.
    故答案为0.2.
    本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.
    三、解答题(本大题共5个小题,共48分)
    14、3+1.
    【解析】
    先利用平方根的性质,然后化简后合并即可.
    【详解】
    解:原式=3+1
    =3+1.
    此题考查二次根式的混合运算,解题关键在于掌握把二次根式化为最简二次根式.
    15、(I)50,1;(Ⅱ)3.7,4,4(Ⅲ)120人
    【解析】
    (I)把条形图中的各组人数相加即可求得参加跳绳测试的学生人数,利用百分比的意义求得m即可;
    (Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
    (Ⅲ)利用总人数乘以对应的百分比即可求解.
    【详解】
    解:(Ⅰ)本次参加跳绳的学生人数是1+5+25+1=50(人),
    m=10×=1.
    故答案是:50,1;
    (Ⅱ)平均数是:(1×2+5×3+25×4+1×5)=3.7(分),
    ∵在这组数据中,4出现了25次,出现次数最多;
    ∴这组样本数据的众数是:4;
    ∵将这组样本数据自小到大的顺序排列,其中处于最中间位置的两个数都是4,有
    ∴这组样本数据的中位数是:4;
    (Ⅲ)∵在50名学生中跳绳测试得3分的学生人数比例为1%,
    ∴估计该校该校九年级跳绳测试中得3分的学生有1200×1%=120(人).
    答:该校九年级跳绳测试中得3分的学生有120人.
    本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    16、(1)a=3, b=3-; (2)6-1.
    【解析】
    (1)先求出范围,再两边都乘以-1,再两边都加上6,即可求出a、b;
    (2)把a、b的值代入求出即可.
    【详解】
    (1)∵2<<3,
    ∴-3<-<-2,
    ∴3<6-<4,
    ∴a=3,b=6--3=3-;
    (2)3a-b2=3×3-(3-)2=9-9+6-1=6-1.
    本题考查了估算无理数的大小和有理数的混合运算的应用,主要考查学生的计算能力.
    17、见解析
    【解析】
    (1)首先化简和,再分别计算乘法即可;
    (2)根据勾股定理画出AC=,再确定B的位置,既要使AB=1,又要使BC=即可;
    (3)利用三角形的面积公式,以BA为底,确定AB上的高为2,再计算即可.
    【详解】
    (1)4=4×=2,
    =×=×=;
    (2)如图所示:
    (3)△ABC的面积1×2=1平方单位.
    本题主要考查了应用与设计作图,以及勾股定理的应用和二次根式的计算,关键是正确化简AC、BC的长.
    18、(1)1500;(2)详见解析;(3)108°;(5)1.
    【解析】
    (1)根据16-18岁的近视人数和所占总调查人数的百分率即可求出总调查人数;
    (2)计算出7-9岁的近视人数即可补全条形统计图;
    (3)求出10-12岁的近视人数占总调查人数的百分率,再乘360°即可;
    (4)求出7-12岁的近视学生人数占总调查人数的百分率,再乘该区总人数即可.
    【详解】
    解:(1)这次抽样调查中共调查了近视学生人数为:330÷22%=1500人
    故答案为:1500
    (2)7-9岁的近视人数为:人
    补全条形统计图如下:
    (3)10-12岁部分的圆心角的度数是
    故答案为:
    (4)10万人=100000人
    估计其中7-12岁的近视学生人数为人
    答:7-12岁的近视学生人数约1人.
    此题考查的是条形统计图和扇形统计图,掌握结合条形统计图和扇形统计图得出有用信息是解决此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(2,﹣3)
    【解析】
    试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
    解:根据题意,知
    点A与B关于原点对称,
    ∵点A的坐标是(﹣2,3),
    ∴B点的坐标为(2,﹣3).
    故答案是:(2,﹣3).
    点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.
    20、1.
    【解析】
    根据已知易得AB-BC=2,AB+BC=3,解方程组即可.
    【详解】
    解:∵△AOB的周长比△BOC的周长多2,
    ∴AB-BC=2.
    又平行四边形ABCD周长为20,
    ∴AB+BC=3.
    ∴AB=1.
    故答案为1.
    本题考查平行四边形的性质,解决平行四边形的周长问题一般转化为两邻边和处理.
    21、②①④⑤③
    【解析】
    根据统计调查的一般过程: ①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为: ②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为: ②①④⑤③.
    22、38°
    【解析】
    根据平行四边形对角相等即可求解.
    【详解】
    解:∵平行四边形ABCD中,∠A=38°,
    ∴∠C=∠A=38°,
    故答案为:38°.
    本题考查了平行四边形的性质,要知道平行四边形对角相等.
    23、y=2x+1.
    【解析】
    根据“左加右减,上加下减”的平移规律可得:将直线y=-2x+3先向下平移3个单位,得到直线y=-2x+3-2,即y=-2x+1.
    故答案是:y=﹣2x+1.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) ;(2)6.
    【解析】
    (1)利用待定系数法,把点与代入解析式列出方程组即可求得解析式;
    (2)把x=3代入(1)中得到的解析式即可求得y值.
    【详解】
    解:(1)∵一次函数的图象经过点与,
    ∴,
    解得:,
    ∴一次函数的解析式为.
    (2)中,
    当时,.
    本题考查了一次函数,运用待定系数法求一次函数的解析式是必备技能,要熟练掌握.
    25、(1);;;;(2)120;30;α;(3)两个带阴影的三角形面积相等,证明见解析.
    【解析】
    分析:(1)过D作DE⊥AB于点E,当α=45°时,可求得DE,从而可求得菱形的面积S,同理可求当α=60°时S的值,当α=120°时,过D作DF⊥AB交BA的延长线于点F,则可求得DF,可求得S的值,同理当α=135°时S的值;
    (2)根据表中所计算出的S的值,可得出答案;
    (3)将△ABO沿AB翻折得到菱形AEBO,将△CDO沿CD翻折得到菱形OCFD.利用(2)中的结论,可求得△AOB和△COD的面积,从而可求得结论.
    详解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,
    则DE=AD=,
    ∴S=AB•DE=,
    同理当α=60°时S=,
    当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,
    则∠DAE=60°,
    ∴DF=AD=,
    ∴S=AB•DF=,
    同理当α=150°时,可求得S=,
    故表中依次填写:;;;;
    (2)由(1)可知S(60°)=S(120°),
    S(150°)=S(30°),
    ∴S(180°-α)=S(α)
    故答案为:120;30;α;
    (3)两个带阴影的三角形面积相等.
    证明:如图3将△ABO沿AB翻折得到菱形AMBO,将△CDO沿CD翻折得到菱形OCND.
    ∵∠AOD=∠COB=90°,
    ∴∠COD+∠AOB=180°,
    ∴S△AOB=S菱形AMBO=S(α)
    S△CDO=S菱形OCND=S(180°-α)
    由(2)中结论S(α)=S(180°-α)
    ∴S△AOB=S△CDO.
    点睛:本题为四边形的综合应用,涉及知识点有菱形的性质和面积、解直角三角形及转化思想等.在(1)中求得菱形的高是解题的关键,在(2)中利用好(1)中的结论即可,在(3)中把三角形的面积转化成菱形的面积是解题的关键.本题考查知识点较基础,难度不大.
    26、(1)85,80(2)九(1)班的成绩比较稳定
    【解析】
    (1)利用众数、中位数的定义分别解答即可;
    (2)根据平均数和方差的公式分别计算出各自的平均数和方差,然后利用方差的意义进行判断即可.
    【详解】
    解:(1)九(1)班复赛成绩的众数是85分;九(2)班复赛成绩的中位数是80分,
    故答案为:85,80;
    (2)九(1)班的选手的得分分别为85,75,80,85,100,
    所以九(1)班成绩的平均数=(85+75+80+85+100)=85(分),
    九(1)班的方差S22= [(85-85)2+(75-85)2+(80-85)2+(85-85)2+(100-85)2]=70(分);
    九(2)班的选手的得分分别为70,100,100,75,80,
    所以九(2)班成绩的平均数=(70+100+100+75+80)=85(分),
    九(2)班的方差S22= [(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160(分)
    因为在平均数一样的情况下,九(1)班方差小,
    所以九(1)班的成绩比较稳定.
    本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.
    题号





    总分
    得分
    30°
    45°
    60°
    90°
    120°
    135°
    150°
    S
    1

    相关试卷

    2025届山东省枣庄市薛城区数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份2025届山东省枣庄市薛城区数学九年级第一学期开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届吉林省通化市名校九年级数学第一学期开学监测模拟试题【含答案】:

    这是一份2025届吉林省通化市名校九年级数学第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年陕西省商洛市名校数学九年级第一学期开学监测模拟试题【含答案】:

    这是一份2024年陕西省商洛市名校数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map