2025届江苏省无锡市(锡山区锡东片)九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份2025届江苏省无锡市(锡山区锡东片)九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是( )
A.B.C.D.5
2、(4分)对一组数据:2,1,3,2,3分析错误的是( )
A.平均数是2.2B.方差是4C.众数是3和2D.中位数是2
3、(4分)已知( ).
A.3B.-3C.5D.-5
4、(4分)如图,将的一边延长至点,若,则等于( )
A.B.C.D.
5、(4分)下列说法中正确的是 ( )
A.若,则B.是实数,且,则
C.有意义时,D.0.1的平方根是
6、(4分)已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
7、(4分)如图,点 P 是反比例函数 y =6/x的图象上的任意一点,过点 P分别作两坐标轴的垂线,与坐标轴构成矩形 OAPB,点 D 是矩形OAPB 内任意一点,连接 DA、DB、DP、DO,则图中阴影 部分的面积
A.1B.2C.3D.4
8、(4分)如图,四边形ABCD是正方形,AB=1,点F是对角线AC延长线上一点,以BC、CF为邻边作菱形BEFC,连接DE,则DE的长是( ).
A.B.C.D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______
10、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.
11、(4分)如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.
12、(4分)若在平行四边形ABCD中,∠A=30°,AB=9,AD=8,则四边形ABCD=_____.
13、(4分)2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.
(1)求证:四边形AEFD是矩形;
(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.
15、(8分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.
在方格纸中画出以为对角线的正方形,点、在小正方形的顶点上;
在方格纸中画出以为一边的菱形,点、在小正方形的顶点上,且菱形面积为;请直接写出的面积.
16、(8分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为: .
(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;
(3)求△AEF周长的最小值.
17、(10分)某车间加工300个零件,加工完80个以后,改进了操作方法,每天能多加工15个,一共用了6天完成任务.求改进操作方法后每天加工的零件个数.
18、(10分)如图,正方形ABCD中,点E是边BC上一点,EF⊥AC于点F,点P是AE的中点.
(1)求证:BP⊥FP;
(2)连接DF,求证:AE=DF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.
20、(4分)如图,直线与的交点坐标为,当时,则的取值范围是__________.
21、(4分)如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为_____
22、(4分)已知双曲线经过点(-1,2),那么k的值等于_______.
23、(4分)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,E、F、 G、H分别为四边形ABCD四边之中点.
(1)求证:四边形EFGH为平行四边形;
(2)当AC、BD满足______时,四边形EFGH为矩形.
25、(10分)已知关于x的一元二次方程.
(1)当m为何值时,方程有两个不相等的实数根;
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
26、(12分)如图,在等边△ABC中,点F、E分别在BC、AC边上,AE=CF,AF与BE相交于点P.
(1)求证:AEP∽BEA;
(2)若BE=3AE,AP=2,求等边ABC的边长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.
【详解】
解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,
设AC=b,BC=a,AB=c,
∵△ABC是直角三角形,且∠BAC=90度,
∴c2+b2=a2,
∴c2+b2=a2,
又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,
∴S1+S2=S3,
∵S3=8,S2=3,
∴S1=S3−S2=8−3=5,
故选:D.
本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.
2、B
【解析】
根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.
【详解】
解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;
B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;
C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;
D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.
故选:B.
此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题
3、A
【解析】
观察已知m2-m-1=0可转化为m2-m=1,再对m4-m3-m+2提取公因式因式分解的过程中将m2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.
【详解】
∵m2-m-1=0,
∴m2-m=1,
∴m4-m3-m+2=m2 (m2-m)-m+2=m2-m+2=1+2=3,
故选A.
本题考查了因式分解的应用,解决本题的关键是将m2-m作为一个整体出现,逐次降低m的次数.
4、A
【解析】
根据平行四边形的对角相等得出∠C=∠BAD,再根据平角等于180°列式求出∠BAD=110°,即可得解.
【详解】
∵四边形ABCD是平行四边形,
∴∠C=∠BAD,
∵∠EAD=70°,
∴∠BAD=180°-∠EAD=110°,
∴∠C=∠BAD=110°.
故选A.
本题考查了平行四边形的对角相等的性质,是基础题,熟记平行四边形的性质是解题的关键.
5、C
【解析】
根据算术平方根的意义,可知=|a|>0,故A不正确;
根据一个数的平方为非负数,可知a≥0,故不正确;
根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确;
根据一个数的平方等于a,那么这个数就是a的平方根,故不正确.
故选C
6、B
【解析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.
【详解】
题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:
应该为:(1)假设∠B≥90°,
(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,
(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,
(4)因此假设不成立.∴∠B<90°,
原题正确顺序为:③④①②,
故选B.
本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.
7、C
【解析】
试题分析:P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=1.∴阴影部分的面积=×矩形OAPB的面积=2.
考点:反比例函数系数k的几何意义
8、C
【解析】
延长DC交EF于G,则CG⊥EF,由正方形和菱形的性质得出∠FCG=∠ACD=45°,CD=BC=CF=EF=1,得出△CFG是等腰直角三角形,得出CG=FG,求出DG=CD+CG=1,GE=EF﹣FG=1.在Rt△DEG中,由勾股定理即可得出答案.
【详解】
延长DC交EF于G,如图所示,则CG⊥EF,∴∠CGF=∠CGE=90°.
∵四边形ABCD是正方形,四边形BEFC是菱形,∴∠FCG=∠ACD=45°,CD=BC=CF=EF=1,∴△CFG是等腰直角三角形,∴CG=FGCF,∴DG=CD+CG=1,GE=EF﹣FG=1.在Rt△DEG中,由勾股定理得:DE.
故选C.
本题考查了正方形的性质、菱形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握正方形和菱形的性质,证明△CFG是等腰直角三角形是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、k<0
【解析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.
【详解】
解:∵一次函数y=kx+3的图象不经过第三象限,
∴经过第一、二、四象限,
∴k
相关试卷
这是一份2024年江苏省无锡市(锡山区锡东片)数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市锡山区东亭片八校九年级数学第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年江苏省无锡市锡山区锡东片九年级上学期数学期中试题及答案,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。