2025届广东省东莞市长安中学数学九年级第一学期开学联考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知m、n是正整数,若+是整数,则满足条件的有序数对(m,n)为( )
A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是
2、(4分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( )
A.53,53B.53,56C.56,53D.56,56
3、(4分)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管( )根.
A.2B.4C.5D.无数
4、(4分)如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若,则S1+S2的值为( )
A.3B.4C.5D.6
5、(4分)分式方程有增根,则的值为
A.0和3B.1C.1和D.3
6、(4分)已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是( ).
A.1B.1.5C.3D.5
7、(4分)如图,将三个同样的正方形的一个顶点重合放置,如果°,°时,那么的度数是( )
A.15°B.25°C.30°D.45°
8、(4分)如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.
10、(4分)若二次根式有意义,则x的取值范围为__________.
11、(4分)若一次函数的函数值随的增大而增大,则的取值范围是_____.
12、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
13、(4分)甲,乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇。着两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示.乙车从A地出发到返回A地需________小时.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.
(1)将向左平移6个单位长度得到.请画出;
(2)将绕点按逆时针方向旋转得到,请画出.
15、(8分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
16、(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
17、(10分)(问题情境)
如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(探究展示)
(1)直接写出AM、AD、MC三条线段的数量关系: ;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
(拓展延伸)
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.
18、(10分)计算:
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数的图象与轴的交点坐标是________.
20、(4分)根据数量关系:的5倍加上1是正数,可列出不等式:__________.
21、(4分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
22、(4分)已知点A(﹣2,y1)、B(﹣3,y2)都在反比例函数y=﹣的图象上,则y1_____y2(填“<”或“>”)
23、(4分)实数a、b在数轴上的位置如图所示,化简=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图平行四边形中,,且,过作于,点是的中点,连接交于点,点是的中点,过作交的延长线于.
(1)若,求的长.(2)求证:.
25、(10分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且的面积为5,求点P的坐标.
26、(12分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.
(1)求实际每年绿化面积是多少万平方米
(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的性质分析即可得出答案.
【详解】
解:∵+是整数,m、n是正整数,
∴m=2,n=5或m=8,n=20,
当m=2,n=5时,原式=2是整数;
当m=8,n=20时,原式=1是整数;
即满足条件的有序数对(m,n)为(2,5)或(8,20),
故选:C.
本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.
2、D
【解析】
根据众数和中位数的定义求解可得.
【详解】
解:将数据重新排列为51,53,53,56,56,56,58,
所以这组数据的中位数为56,众数为56,
故选:D.
本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
3、C
【解析】
分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.
详解:如图所示,∠AOB=15°,
∵OE=FE,
∴∠GEF=∠EGF=15°×2=30°,
∵EF=GF,所以∠EGF=30°
∴∠GFH=15°+30°=45°
∵GH=GF
∴∠GHF=45°,∠HGQ=45°+15°=60°
∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,
∵QH=QB
∴∠QBH=75°,∠HQB=180-75°-75°=30°,
故∠OQB=60°+30°=90°,不能再添加了.
故选C.
点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.
4、B
【解析】
首先根据反比例函数中k的几何意义,可知S矩形ACOD=S矩形BEOF=|k|=3,又S阴影=1,则S1=S矩形ACOD-S阴影=2,S2=S矩形BEOF-S阴影=2,从而求出S1+S2的值.
【详解】
解:∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,
∴S矩形ACOD=S矩形BEOF=3,
又∵S阴影=1,
∴S1=S2=3-1=2,
∴S1+S2=1.
故选:B.
主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
5、D
【解析】
等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.
【详解】
∵分式方程-1=有增根,
∴x﹣1=0,x+1=0,
∴x1=1,x1=﹣1.
两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=2;
当x=﹣1时,m=﹣1+1=0,
当m=0,方程无解,
∴m=2.
故选D.
6、B
【解析】
数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.
故选B.
7、A
【解析】
根据∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.
【详解】
∵∠BOD=90°-∠3=90°-30°=60°,
∠EOC=90°-∠1=90°-45°=45°,
又∵∠2=∠BOD+∠EOC-∠BOE,
∴∠2=60°+45°-90°=15°.
故选:A.
此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE这一关系是解题的关键.
8、B
【解析】
根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.
【详解】
由题意可得,
点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,
点P到B→C的过程中,y=2(x-2)=x-2(2<x≤6),故选项A错误,
点P到C→D的过程中,y=24=4(6<x≤8),故选项D错误,
点P到D→A的过程中,y=2(12-x)=12-x(8
故选B.
本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论
【详解】
连接,
∵,是等腰直角三角形,
∴,∠ABC=90°
∵四边形是正方形
∴BD=BF,∠DBF=∠ABC=90°,
∴∠ABD=∠CBF,
在△DAP与△BAP中
∴,
∴,
点运动的路径长度即为点从到的运动路径,为.
故答案为:
本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.
10、x≤1
【解析】
解:∵二次根式有意义,
∴1-x≥0,
∴x≤1.
故答案为:x≤1.
11、k>2
【解析】
试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
【详解】
根据题意可得:k-2>0,解得:k>2.
考点:一次函数的性质;一次函数的定义
12、-2
【解析】
根据平均数的公式可得关于x的方程,解方程即可得.
【详解】
由题意得
,
解得:x=-2,
故答案为:-2.
本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.
13、
【解析】
根据题意和函数图象中的数据可以列出相应的方程组,从而可以求得甲、乙两车的速度和乙到达B地时的时间,再根据函数图象即可求得乙车从A地出发到返回A地需的时间.
【详解】
解:如图,
设甲车的速度为a千米/小时,乙的速度为b千米/小时,甲乙第一相遇之后在c小时,相距200千米,则
,
解得:,
∴乙车从A地出发到返回A地需要:(小时);
故答案为:
本题考查函数图象,解三元一次方程组,解答本题的明确题意,利用数形结合的思想解答.
三、解答题(本大题共5个小题,共48分)
14、(1)图见详解;(1)图见详解.
【解析】
(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;
(1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.
【详解】
解:(1)如图所示:△A1B1C1,即为所求;
(1)如图所示:△A1B1C1,即为所求.
此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.
15、(1)1万元 (2)共有5种进货方案 (3)购买A款汽车6辆,B款汽车1辆时对公司更有利
【解析】
分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
详解:(1)设今年5月份A款汽车每辆售价m万元.则:
,
解得:m=1.
经检验,m=1是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价1万元;
(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:
11≤7.5x+6(15﹣x)≤2.
解得:6≤x≤3.
∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车x辆,则:
W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.
点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
16、(1)(0,3);(2).
【解析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
【详解】
(1)在Rt△AOB中,
∵,
∴,
∴OB=3,
∴点B的坐标是(0,3) .
(2)∵=BC•OA,
∴BC×2=4,
∴BC=4,
∴C(0,-1).
设的解析式为,
把A(2,0),C(0,-1)代入得:,
∴,
∴的解析式为是.
考点:一次函数的性质.
17、(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立
【解析】
(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.
(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.
(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.
【详解】
解:(1)证明:延长AE、BC交于点N,如图1(1),
∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠ENC=∠MAE.∴MA=MN.
∴△ADE≌△NCE(AAS)
∴AD=NC.∴MA=MN=NC+MC=AD+MC.
(2)AM=DE+BM成立.
证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.
∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.
∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.
(3)①结论AM=AD+MC仍然成立.
证明:延长AE、BC交于点P,如图2(1),
∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠EPC=∠MAE.∴MA=MP.
∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.
②结论AM=DE+BM不成立.
证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,
∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.
∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.
∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.
∴AM=DE+BM不成立.
本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.
18、(1);(2)--.
【解析】
【分析】(1)根据同分母分式加减法的法则进行计算即可得;
(2)利用多项式乘多项式的法则进行展开,然后再合并同类二次根式即可得.
【详解】(1)= =;
(2)原式=-+-
=--.
【点睛】本题考查了分式的加减法、二次根式的混合运算,熟练掌握同分母分式加减法法则、二次根式混合运算的运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (0,-3).
【解析】
令x= 0,求出y的值即可得出结论.
【详解】
解:当x=0时,y=-3
∴一次函数的图象与y轴的交点坐标是(0,-3).
故答案为:(0,-3).
本题考查的是一次函数图形上点的特征,熟知一次函数图象与坐标轴交点的算法是解答此题的关键.
20、
【解析】
问题中的“正数”是关键词语,将它转化为数学符号即可.
【详解】
题中“x的5倍加上1”表示为:
“正数”就是
的5倍加上1是正数,可列出不等式:
故答案为:.
用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,
弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.
21、10%.
【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
【详解】
设平均每次降价的百分率为,根据题意列方程得,
,
解得,(不符合题意,舍去),
答:这个百分率是.
故答案为.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
22、>.
【解析】
依据k=﹣8<0,可得此函数在每个象限内,y随x的增大而增大,根据反比例函数的性质可以判断y1与y2的大小关系.
【详解】
∵y=﹣,在二四象限,
∴此函数在每个象限内,y随x的增大而增大,
∵A(﹣2,y1)、B(﹣3,y2)都在反比例函数y=﹣的图象上,﹣2>﹣3,
∴y1>y2,
故答案为>.
题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
23、-b
【解析】
根据数轴判断出、的正负情况,然后根据绝对值的性质以及二次根式的性质解答即可.
【详解】
由图可知,,,
所以,,
.
故答案为-b
本题考查了实数与数轴,绝对值的性质以及二次根式的性质,根据数轴判断出、的正负情况是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析.
【解析】
(1)由已知四边形是平行四边形得出,且,可求出AF,再通过证明即可求出的长;(2)通过作辅助线证明即可证明.
【详解】
解:(1)在平行四边形中,
,
∵,
∴,
,,
∴,
∴.
点是的中点,
,
.
∴,
∴
∴,,
∴.
(2)连接,
∵,,
∴,
∵点是的中点,,
∴,
∴,
∴
∴,
∴,
∴.
方法二:取中点,连接(其他证法均参照评分)
本题考查了平行四边形的性质、三角形全等的判定与性质,利用三角形证明与是解题的关键.
25、(1) (2)P的坐标为或
【解析】
(1)利用点A在上求a,进而代入反比例函数求k即可;
(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.
【详解】
(1)把点代入,得,
∴
把代入反比例函数,
∴;
∴反比例函数的表达式为;
(2)∵一次函数的图象与x轴交于点C,
∴,
设,
∴,
∴,
∴或,
∴P的坐标为或.
本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.
26、 (1)实际每年绿化面积为75万平方米;(2)平均每年绿化面积至少还要增加37.5万平方米.
【解析】
(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.5x万平方米.根据“实际每年绿化面积是原计划的1.5倍,这样可提前3年完成任务”列出方程;
(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.
【详解】
解:(1)设原计划每年绿化面积为x万平方米,
,
解得x=50,
经检验,x=50是此分式方程的解.
∴1.5x=75.
答:实际每年绿化面积为75万平方米.
(2)设平均每年绿化面积至少还要增加a万平方米,
75×3+2(75+a)≥450,解得a≥37.5.
答:平均每年绿化面积至少还要增加37.5万平方米.
此题考查一元一次不等式的应用,分式方程的应用,解题关键在于列出方程
题号
一
二
三
四
五
总分
得分
批阅人
2024年广东省实验中学数学九年级第一学期开学联考模拟试题【含答案】: 这是一份2024年广东省实验中学数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省东莞市长安实验中学数学九上开学统考试题【含答案】: 这是一份2024年广东省东莞市长安实验中学数学九上开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省东莞市长安实验中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年广东省东莞市长安实验中学数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。