年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】

    2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】第1页
    2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】第2页
    2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】

    展开

    这是一份2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)正方形具有而矩形不一定具有的性质是 ( )
    A.对角线互相垂直B.对角线互相平分
    C.对角线相等D.四个角都是直角
    2、(4分)当x=2时,下列各式的值为0的是( )
    A.B.C. D.
    3、(4分)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是
    A.4 B.3 C.2 D.1
    4、(4分)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是( )
    A.B.C.D.
    5、(4分)若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是( )
    A.m≠2且n=0B.m=2且n=0C.m≠2D.n=0
    6、(4分)如果代数式有意义,则x的取值范围是( ).
    A.x≠3B.x3D.x≥3
    7、(4分)下列各曲线中能表示y是x的函数的是( )
    A.B.C.D.
    8、(4分)在平行四边形ABCD中,数据如图,则∠D的度数为( )
    A.20°B.80°C.100°D.120°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)将直线向右平移2个单位长度,所得直线的解析式为________.
    10、(4分)农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).
    11、(4分)如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。
    12、(4分)直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    13、(4分)一组数据为5,7,3,,6,4. 若这组数据的众数是5,则该组数据的平均数是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.
    (1)断⊿BEC的形状,并说明理由;
    (2)判断四边形EFPH是什么特殊四边形?并证明你的判断.
    15、(8分)如图所示,的顶点在的网格中的格点上,
    画出绕点A逆时针旋转得到的;
    画出绕点A顺时针旋转得到的
    16、(8分)如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(顶点都在格点上的四边形称为格点四边形)
    (1)在图①中画出一个面积最小的中心对称图形PAQB,
    (2)在图②中画出一个四边形PCQD,使其是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.
    17、(10分)如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,
    18、(10分)材料一:如图1,由课本91页例2画函数y=﹣6x与y=﹣6x+5可知,直线y=﹣6x+5可以由直线y=﹣6x向上平移5个单位长度得到由此我们得到正确的结论一:在直线L1:y=K1x+b1与直线L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反过来,也成立.
    材料二:如图2,由课本92页例3画函数y=2x﹣1与y=﹣0.5x+1可知,利用所学知识一定能证出这两条直线是互相垂直的.由此我们得到正确的结论二:在直线L1:y=k1x+b1 与L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反过来,也成立
    应用举例
    已知直线y=﹣x+5与直线y=kx+2互相垂直,则﹣k=﹣1.所以k=6
    解决问题
    (1)请写出一条直线解析式______,使它与直线y=x﹣3平行.
    (2)如图3,点A坐标为(﹣1,0),点P是直线y=﹣3x+2上一动点,当点P运动到何位置时,线段PA的长度最小?并求出此时点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在一个不透明的口袋中,装有4个红球和1个白球,这些球除颜色之外其余都相同,那么摸出1个球是红球的概率为________.
    20、(4分)一组数据:2,3,4,5,6的方差是 ____
    21、(4分)若在实数范围内有意义,则x的取值范围是_________.
    22、(4分)如果最简二次根式与最简二次根式同类二次根式,则x=_______.
    23、(4分)分解因式:2x2-8x+8=__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.
    (1)试求点的运动速度;
    (2)求出此时、两点间的距离.
    25、(10分)如图,将绕点A按逆时针方向旋转,使点B落在BC边上的点D处,得.若,,求的度数.
    26、(12分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
    (1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
    (2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.
    考点:(1)、正方形的性质;(2)、矩形的性质
    2、C
    【解析】
    根据分式值为0时,分子等于0,分母不等于0解答即可.
    【详解】
    当x=2时,A、B的分母为0,分式无意义,故A、B不符合题意;
    当x=2时,2x-4=0,x-90,故C符合题意;
    当x=2时,x+20,故D不符合题意.
    故选:C
    本题考查的是分式值为0的条件,易错点是在考虑分子等于0 的同时应考虑分母不等于0.
    3、B
    【解析】
    试题分析:∵DE=BF,∴DF=BE。
    ∵在Rt△DCF和Rt△BAE中,CD=AB,DF=BE,∴Rt△DCF≌Rt△BAE(HL)。
    ∴FC=EA。故①正确。
    ∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC。
    ∵FC=EA,∴四边形CFAE是平行四边形。
    ∴EO=FO。故②正确。
    ∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE。∴CD∥AB。
    ∵CD=AB,∴四边形ABCD是平行四边形。故③正确。
    由上可得:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE等。故④图中共有6对全等三角形错误。
    故正确的有3个。故选B。
    4、A
    【解析】
    根据图象求出交点P的坐标,根据点P的坐标即可得出答案:
    ∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),
    ∴方程组的解是.故选A.
    5、A
    【解析】
    试题解析:若y关于x的函数是正比例函数,

    解得:
    故选A.
    6、C
    【解析】
    根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须。故选C。
    7、B
    【解析】
    因为对于函数中自变量x的取值,y有唯一一个值与之对应,故选B.
    8、B
    【解析】
    依据平行四边形的性质可得5x+4x=180°,解得x=20°,则∠D=∠B=80°.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴5x+4x=180°,解得x=20°.
    ∴∠D=∠B=4×20°=80°.
    故选B.
    本题主要考查了平行四边形的性质:邻角互补.同时考查了方程思想.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=−3x+1
    【解析】
    根据“上加下减,左加右减”的平移规律进行解答即可.
    【详解】
    解:由“左加右减”的原则可知,将直线y=−3x+1向右平移2个单位长度所得函数的解析式为:y=−3(x−2)+1,即y=−3x+1,
    故答案为:y=−3x+1.
    本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的平移规律是解答此题的关键.
    10、乙
    【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.
    11、9
    【解析】
    根据三角形中位线定理求出DE、DF、EF即可解决问题.
    【详解】
    解:∵点D、E、F分别是边AB、AC、BC的中点


    ∴△DEF的周长是:
    本题考查了三角形中位线,熟练掌握三角形中位线定理是解题的关键.
    12、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
    13、5
    【解析】
    首先根据众数的定义:是一组数据中出现次数最多的数值,即可得出,进而可求得该组数据的平均数.
    【详解】
    解:根据题意,可得
    则该组数据的平均数为
    故答案为5.
    此题主要考查众数的理解和平均数的求解,熟练掌握,即可解题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)△BEC是直角三角形,理由见解析;
    (2)四边形EFPH为矩形,证明见解析;
    【解析】
    (1)由矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;
    (2)由矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;
    【详解】
    (1)△BEC是直角三角形,
    理由是:∵矩形ABCD,
    ∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,
    由勾股定理得:CE===,
    同理BE=2,
    ∴CE2+BE2=5+20=25,
    ∵BC2=52=25,
    ∴BE2+CE2=BC2,
    ∴∠BEC=90°,
    ∴△BEC是直角三角形.
    (2)四边形EFPH为矩形,
    ∵矩形ABCD,
    ∴AD=BC,AD∥BC,
    ∵DE=BP,
    ∴四边形DEBP是平行四边形,
    ∴BE∥DP,
    ∵AD=BC,AD∥BC,DE=BP,
    ∴AE=CP,
    ∴四边形AECP是平行四边形,
    ∴AP∥CE,
    ∴四边形EFPH是平行四边形,
    ∵∠BEC=90°,
    ∴平行四边形EFPH是矩形.
    考点:1、勾股定理及逆定理;2、矩形的性质和判定;3、平行四边形的性质和判定;4、三角形的面积
    15、(1)作图见解析;(2)作图见解析.
    【解析】
    利用网格特点和旋转的性质画出点B、C的对应点、得到;
    利用网格特点和旋转的性质画出点B、C的对应点、得到.
    【详解】
    解:如图,为所作;
    如图,为所作.
    本题考查了作图旋转变换.根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    16、(1)画图见解析;(2)画图见解析.
    【解析】
    (1)利用方格纸的特点及几何图形的计算方法,利用割补法,把四边形PAQB的面积转化为△PAQ与△PBQ的面积之和,根据两个三角形的底PQ一定时,要使面积最小,则满足高最小,且同时满足顶点都在格点上即可得答案;(2)根据题意,画出的四边形是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到可知此四边形是等腰梯形,根据方格纸的特点,作出满足条件的图形即可.
    【详解】
    (1)∵PQ为对角线,
    ∴S四边形PAQB=S△PAQ+S△PBQ,
    ∵PQ一定时,高最小时,△PAQ与△PBQ的面积最小,A、B在格点上,
    ∴高为1,
    ∴四边形PAQB如图①所示:
    (2)∵四边形PCQD是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到,
    ∴四边形PCQD是等腰梯形,
    ∴四边形PCQD如图②所示:
    本题考查了作图——旋转变化及利用割补法计算几何图形的面积,熟练掌握旋转的性质及方格纸的特点是解题关键.
    17、公里
    【解析】
    先过点C向AB作垂线,构造直角三角形,利用60°和45°特殊角,表示出相关线段,利用已知CB长度为10公里,建立方程,解出这些相关线段,从而求得A、C两地的距离.
    【详解】
    解:如图,过点作于点,
    则,,,
    在中,




    由勾股定理可得:,
    在中,

    、两地间的距离为公里.
    本题主要考查了勾股定理应用题,正确构造直角三角形,然后利用特殊角表示相关线段,从而求解是解题关键.
    18、(1)y=x;(2)当线段PA的长度最小时,点P的坐标为.
    【解析】
    (1)由两直线平行可得出k1=k2=1、b1≠b2=﹣3,取b1=0即可得出结论;
    (2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,由两直线平行可设直线PA的解析式为y=x+b,由点A的坐标利用待定系数法可求出直线PA的解析式,联立两直线解析式成方程组,再通过解方程组即可求出:当线段PA的长度最小时,点P的坐标.
    【详解】
    .解:(1)∵两直线平行,
    ∴k1=k2=1,b1≠b2=﹣3,
    ∴该直线可以为y=x.
    故答案为y=x.
    (2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,如图所示.
    ∵直线PA与直线y=﹣3x+2垂直,
    ∴设直线PA的解析式为y=x+b.
    ∵点A(﹣1,0)在直线PA上,
    ∴×(﹣1)+b=0,解得:b=,
    ∴直线PA的解析式为y=x+.
    联立两直线解析式成方程组,得:
    ,解得: .
    ∴当线段PA的长度最小时,点P的坐标为(,).
    本题考查待定系数法求一次函数解析式、垂线段以及两直线平行或相交,解题的关键是:(1)根据材料一找出与已知直线平行的直线;(2)利用点到直线之间垂直线段最短找出点P的位置.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、0.8
    【解析】
    由一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,直接利用概率公式求解即可求得答案.
    【详解】
    解:∵一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,
    ∴从口袋中随机摸一个球,则摸到红球的概率为:
    故答案为:0.8
    此题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.
    20、2
    【解析】
    =4,∴S2= [(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.
    21、x≥-1
    【解析】
    根据二次根式的性质即可求解.
    【详解】
    依题意得x+1≥0,
    解得x≥-1
    故填:x≥-1
    此题主要考查二次根式的性质,解题的关键是熟知根号内被开方数为非负数.
    22、1
    【解析】
    ∵最简二次根式与最简二次根式是同类二次根式,
    ∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.
    23、2(x-2)2
    【解析】
    先运用提公因式法,再运用完全平方公式.
    【详解】
    :2x2-8x+8=.
    故答案为2(x-2)2.
    本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)D、E两点间的距离为或1.
    【解析】
    (1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.分两种情形分别构建方程即可解决问题.
    (2)分两种情形利用相似三角形的性质解决问题即可.
    【详解】
    解:(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.

    ①当时,△ADE∽△ABC,
    ∴,
    解得x=,
    ∴点E的运动速度为cm/s.
    ②当,△ADE∽△ACB,
    ∴,
    ∴x=,
    ∴点E的是的为cm/s.
    (2)当△ADE∽△ABC时,,
    ∴,
    ∴DE=,
    当△ADE∽△ACB时,,
    ∴,
    ∴DE=1,
    综上所述,D、E两点间的距离为或1.
    本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    25、20°
    【解析】
    由旋转的性质可得∠AED=∠ACB=40°,∠BAD=∠DAE, AB=AD,AC=AE, 又因为DE∥AB,所以∠BAD=∠ADE,列出方程求解可得出∠BAD=60°,所以∠ACE=∠AEC =60°,∠DEC=∠AEC-∠AED=60°-40°=20°
    【详解】
    解:∵将△ABC绕点A按逆时针方向旋转后得△ADE,
    ∴∠AED=∠ACB=40°,∠BAD=∠DAE, AB=AD,AC=AE,
    ∴∠ABD=∠ADB,∠ACE=∠AEC,
    ∵DE∥AB,
    ∴∠BAD=∠ADE
    设∠BAD=x, ∠ABD=y,=z,可列方程组:

    解得:x=60°
    即∠BAD=60°
    ∴∠ACE=∠AEC =60°
    ∴∠DEC=∠AEC-∠AED=60°-40°=20°
    此题考查了旋转的性质以及平行线的性质.注意掌握旋转前后图形的对应关系以及方程思想的应用是关键.
    26、(1)PB=PQ.证明见解析;(2)PB=PQ.证明见解析.
    【解析】
    试题分析:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;
    (2)证明思路同(1).
    试题解析:(1)PB=PQ,
    证明:过P作PE⊥BC,PF⊥CD,
    ∵P,C为正方形对角线AC上的点,
    ∴PC平分∠DCB,∠DCB=90°,
    ∴PF=PE,
    ∴四边形PECF为正方形,
    ∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,
    ∴∠BPE=∠QPF,
    ∴Rt△PQF≌Rt△PBE,
    ∴PB=PQ;
    (2)PB=PQ,
    证明:过P作PE⊥BC,PF⊥CD,
    ∵P,C为正方形对角线AC上的点,
    ∴PC平分∠DCB,∠DCB=90°,
    ∴PF=PE,
    ∴四边形PECF为正方形,
    ∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,
    ∴∠BPE=∠QPF,
    ∴Rt△PQF≌Rt△PBE,
    ∴PB=PQ.
    考点: 正方形的判定与性质;全等三角形的判定与性质.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年福建省厦门市湖里实验中学九上数学开学考试模拟试题【含答案】:

    这是一份2024年福建省厦门市湖里实验中学九上数学开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省厦门市湖里区湖里实验中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案:

    这是一份福建省厦门市湖里区湖里实验中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。

    福建省厦门市湖里区湖里中学2023-2024学年数学九上期末学业水平测试模拟试题含答案:

    这是一份福建省厦门市湖里区湖里中学2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,若,则的长为,在相同时刻,物高与影长成正比,关于x的一元二次方程x2+等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map