2024年江苏南通市启秀中学九年级数学第一学期开学经典模拟试题【含答案】
展开
这是一份2024年江苏南通市启秀中学九年级数学第一学期开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果a < b ,则下列式子错误的是( )
A.a +7< b +7B.a ﹣5< b ﹣5
C.﹣3 a <﹣3 bD.
2、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
A.B.C.D.
3、(4分)已知是一次函数的图象上的两个点,则的大小关系是( )
A.B.C.D.不能确定
4、(4分)某校团委为了解本校八年级500名学生平均每晚的睡眠时间,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校八年级500名学生平均每晚的睡眠时间;其中正确的是( )
A.①②B.①④C.②③D.②④
5、(4分)已知(4+)•a=b,若b是整数,则a的值可能是( )
A.B.4+C.4﹣D.2﹣
6、(4分)若实数a,b,c满足,且,则函数的图象一定不经过
A.第四象限B.第三象限C.第二象限D.第一象限
7、(4分)已知点A(1,2)在反比例函数的图象上,则该反比例函数的解析式是( )
A.B.C.D.y=2x
8、(4分)若分式有意义,则实数x的取值范围是( )
A.x>5B.x<5C.x=5D.x≠5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.
10、(4分)如图,已知一次函数y=kx+3和y=-x+b的图象交于点P(2,4),则关于x的一元一次不等式kx+3>-x+b的解集是_______.
11、(4分)若2x﹣5没有平方根,则x的取值范围为_____.
12、(4分)如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是_____.
13、(4分)设甲组数:,,,的方差为,乙组数是:,,,的方差为,则与的大小关系是_______(选择“>”、“AB),点 E 从 A 点出发,以 1 个单位每秒的速度向终点 D 运动;同时点 F 从 C 点出发,以 2 个单位每秒的速度向终点 B 运动,当点 E、F 运动过程中使四边形 ABFE 是等腰直角四边形时,求 EF 的长.
图 2
26、(12分)某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据不等式的性质,逐项判断即可.
【详解】
解:∵a<b,∴a+7<b+7,故选项A不符合题意;
∵a<b,∴a-5<b-5,故选项B不符合题意;
∵a<b,∴-3a>-3b,故选项C符合题意;
∵a<b,∴,故选项D不符合题意.
故选:C.
此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
2、D
【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
【详解】
如下图,连接BD,角AC于点E,
∵四边形ABCD为菱形,
∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
在Rt△AEB中, AE=3cm,
∴AB==3=2
故选D.
本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
3、C
【解析】
将点的坐标代入解析式求得y1=1-1=0,y1=-1-1=-1,然后进行大小比较即可.
【详解】
解:∵P1(-1,y1)、P1(1,y1)是y=-x-1的图象上的两个点,
∴y1=1-1=0,y1=-1-1=-1,
∵0>-1,
∴y1>y1.
故选:C.
本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.
4、B
【解析】
根据问题特点,选用合适的调查方法.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.同时根据随机事件的定义,以及样本容量的定义来解决即可.
【详解】
解:①本次调查方式属于抽样调查,正确;
②每个学生的睡眠时间是个体,此结论错误;
③100名学生的睡眠时间是总体的一个样本,此结论错误;
④总体是该校八年级500名学生平均每晚的睡眠时间,正确.
故选:B.
本题考查总体,样本,样本的容量的概念,熟练掌握相关定义是解题关键.
5、C
【解析】
找出括号中式子的有理化因式即可得.
【详解】
解:(4+)×(4-)=42-()2=16-3=13,是整数,
所以a的值可能为4-,
故选C
本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.
6、C
【解析】
先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.
【详解】
解:,且,
,,的正负情况不能确定,
,
函数的图象与y轴负半轴相交,
,
函数的图象经过第一、三、四象限.
故选C.
本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.
7、C
【解析】
把点A(1,2)代入可得方程2=,解方程即可.
【详解】
解:∵点A(1,2)在反比例函数的图象上,
∴2=,
∴k=2,
则这个反比例函数的解析式是.
故选:C.
本题考查了用待定系数法求函数解析式,正确代入是解题的关键.
8、D
【解析】
根据分式有意义的条件:分母≠0,即可求出结论.
【详解】
解:若分式有意义,
则x-1≠0,
解得:x≠1.
故选:D.
此题主要考查了分式有意义的条件,正确把握分式有意义的条件:分母≠0是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.1
【解析】
根据众数的定义先求出x的值,然后再根据方差的公式进行计算即可得.
【详解】
解:已知一组数据1,x,4,6,7的众数是6,说明x=6,
则平均数=(1+6+4+6+7)÷5=15÷5=5,
则这组数据的方差==3.1,
故答案为3.1.
本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.
10、x>1
【解析】
观察函数图象得到当x>1时,函数y=kx+3的图象都在y=-x+b的图象上方,所以关于x的不等式kx+3>-x+b的解集为x>1.
【详解】
解:当x>1时,kx+3>-x+b,
即不等式kx+3>-x+b的解集为x>1.
故答案为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、x<.
【解析】
由负数没有平方根得出关于x的不等式,解之可得.
【详解】
由题意知2x﹣5<0,
解得x<,
故答案为:x<.
此题考查平方根的性质,正数有两个平方根它们互为相反数,零的平方根是它本身,负数没有平方根.
12、1-1
【解析】
如图,
过P作PE⊥CD,PF⊥BC,
∵正方形ABCD的边长是1,△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=1,
∴∠PCE=30°
∴PF=PB•sin60°=1×=,PE=PC•sin30°=2,
S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×1×+×2×1﹣×1×1=1+1﹣8=1﹣1.
故答案为1﹣1.
点睛:本题考查正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.
13、
【解析】
根据方差的意义进行判断.
【详解】
因为甲组数有波动,而乙组的数据都相等,没有波动,
所以>.
故答案为:>.
此题考查方差,解题关键在于掌握方差的意义.
三、解答题(本大题共5个小题,共48分)
14、BE∥DF,BE=DF,理由见解析
【解析】
证明△BCE≌△DAF,得到BE=DF,∠3=∠1,问题得解.
【详解】
解:猜想:BE∥DF,BE=DF.
证明:如图1
∵四边形ABCD是平行四边形,
∴BC=AD,∠1=∠2,
又∵CE=AF,
∴△BCE≌△DAF.
∴BE=DF,∠3=∠1.
∴BE∥DF.
此题考查了平行四边形的性质、全等三角形的判定与性质.难度适中,注意掌握数形结合思想的应用.
15、 (1)见解析;(2)图形见解析,点B2、C2的坐标分别为(0,-2),(-2,-1)
【解析】
(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可.
【详解】
(1)△ABC关于原点O对称的△A1B1C1如图所示:
(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1).
本题考查了作图﹣旋转变换,熟知图形旋转的性质是解答此题的关键.
16、(1)2(2)见解析(3)当t=时,△POQ面积的最大值
【解析】
(1)根据菱形的对角线互相垂直平分的性质得到直角△AOD,在该直角三角形中利用勾股定理来求线段DO的长度;
(2)需要分类讨论:点P在线段OA上、点Q在线段OD上;点P在线段OC上,点Q在线段OD上;点P在线段OC上,点Q在线段OB上;
(3)由6<t≤2时OP=1﹣2t、OQ=2﹣t可得△POQ的面积S=(2﹣t)(1﹣2t)=﹣t2+15t﹣54=﹣(t﹣)2+,利用二次函数的性质求解可得.
【详解】
(1)∵四边形ABCD是菱形,
∴AC⊥BD.
在Rt△AOD中,AD=15,AO=1
由勾股定理得:
OD==2.
(2)①当0≤t≤6时,OP=1﹣2t,OQ=2﹣t,则OP+OQ=1﹣2t+2﹣t=﹣3t+21
即:y=﹣3t+21;
②当6<t≤2时,OP=2t﹣1,OQ=2﹣t,则OP+OQ=2t﹣1+2﹣t=t﹣3
即:y=t﹣3;
③当2<t≤1时,OP=2t﹣1,OQ=t﹣2,则OP+OQ=2t﹣1+t﹣2=3t﹣21
即:y=3t﹣21;
综上所述:y=;
(3)如图,
当6<t≤2时,∵OP=1﹣2t、OQ=2﹣t,
∴△POQ的面积S=(2﹣t)(1﹣2t)
=﹣t2+15t﹣54
=﹣(t﹣)2+,
∴当t=时,△POQ面积的最大值.
本题主要考查四边形的综合问题,解题的关键是熟练掌握菱形的性质、二次函数的应用及分类讨论思想的运用.
17、(1)组装A、B两种型号的健身器材共有9种组装方案;(2)总组装费用最少的组装方案:组装A型器材22套,组装B型器材18套
【解析】
(1)设公司组装A型器材x套,则组装B型器材(40-x)套,依题意得,解不等式组可得;
(2)总的组装费用:y=20x+18(40-x)=2x+720,可分析出最值.
【详解】
(1)设公司组装A型器材x套,则组装B型器材(40-x)套,依题意得
,
解得:22≤x≤30 ,
由于x为整数,∴x取22,23,24,25,26,27,28,29,30,
∴组装A、B两种型号的健身器材共有9种组装方案;
(2)总的组装费用:y=20x+18(40-x)=2x+720 ,
∵k=2>0,∴y随x的增大而增大,
∴当x=22时,总的组装费用最少,最少组装费用是2×22+720=764元,
总组装费用最少的组装方案:组装A型器材22套,组装B型器材18套.
18、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析
【解析】
(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;
(2)作CD⊥AB于D.求出CD的值即可判定;
【详解】
解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°
∴∠ACB=180°-∠CBA-∠CAB=30°;
(2)由(1)可知∠ACB=∠CAB=30°,
∴AB=CB=30×=20(海里), ∠CBD=60°,
过点C作CD⊥AB于点D,在Rt△CBD中,
CD=BCsin60°=10(海里)
10>15
∴海监船继续向正东方向航行是安全的.
本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用平行四边形的对角相等、邻角互补可求得答案.
【详解】
解:因为四边形ABCD是平行四边形,
所以∠B=∠D,∠A+∠B=180°.
因为∠B+∠D=190°,
所以∠B=95°.
所以∠A=180°﹣95°=1°.
故答案为1.
此题考查平行四边形的性质,解题关键在于掌握其性质定理
20、2
【解析】
根据二次根式乘法法则进行计算.
【详解】
=.
故答案是:2.
考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算.
21、1
【解析】
根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.
【详解】
解:∵a是方程x2-2x-1=0的一个解,
∴a2-2a=1,
则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=1;
故答案为:1.
本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.
22、x>-3
【解析】
根据题意得:x+3>0,即x>-3.
23、10%
【解析】
本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两个月净化的污水量平均每月增长的百分率为x,那么由题意可得出方程为3(1+x)2=3.63解方程即可求解.
【详解】
解:设这两个月净化的污水量平均每月增长的百分率为x,由题意得3(1+x)2=3.63
解得x=0.1或-2.1(不合题意,舍去)
所以这两个月净化的污水量平均每月增长的百分率为10%.
本题主要考查了增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.
二、解答题(本大题共3个小题,共30分)
24、①一,通分错误;②答案见解析
【解析】
①利用分式加减运算法则判断得出答案;
②直接利用分式加减运算法则计算得出答案.
【详解】
①该学生解答过程从第 一步开始出错,其错误原因是 通分错误.
故答案为:一,通分错误;
②原式
.
当x=3时,原式.
本题考查了分式的化简求值,正确掌握分式的加减运算法则是解题的关键.
25、(1)①BD=;②证明见详解;(2)或
【解析】
(1)①只要证明四边形ABCD是正方形即可解决问题;
②只要证明△ABD≌△CBD,即可解决问题;
(2)先解方程,求出AB和BC的长度,然后根据题意,讨论当AB=AE,或AB=BF时,四边形ABFE是等腰直角四边形.当AB=AE=4时,连接EF,过F作FG⊥AE,交AE于点G,可得运动的时间为4s,可得CF=8,然后得到GE=2,利用勾股定理得到EF的长度;当AB=BF=4时,连接EF,过点E作EH⊥BF,交BF于点H ,可得CF=6,运动的时间为3s,可得AE=3,然后得到FH=1,利用勾股定理求得EF的长度.
【详解】
解:(1)①∵AB=CD=1,AB∥CD,
∴四边形ABCD是平行四边形,
∵AB=BC,
∴四边形ABCD是菱形,
∵∠ABC=90°,
∴四边形ABCD是正方形,
∴BD=AC=;
②如图1中,连接AC、BD.
∵AB=BC,AC⊥BD,
∴∠BAC=∠BCA,
∴∠ABD=∠CBD,
∵BD=BD,
∴△ABD≌△CBD,
∴AD=CD.
(2)由AB和BC的长度是方程-14x+40=0的两根,则
解方程:-14x+40=0得,,
∵BC >AB,
∴AB=4,BC=10.
根据题意,当AB=AE和AB=BF时,四边形ABFE是等腰直角四边形;
当AB=AE时,如图,连接EF,过F作FG⊥AE,交AE于点G:
∴AB=AE=4,四边形ABFG是矩形,
∴运动的时间为:,
∴CF=,
∴BF=2=AG,
∴GE=2,GF=AB=4,
由勾股定理得:EF=;
当AB=BF时,如图,连接EF,过点E作EH⊥BF,交BF于点H:
∴AB=BF=4,
∴CF=10-4=6,
则运动的时间为:,
∴AE=3,EH=AB=4
∴FH=4-3=1,
由勾股定理得:EF=;
故EF的长度为:或.
本题考查四边形综合题、矩形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.
26、(1)与x的函数关系式为=1100x;与x的函数关系式为=1200x-20000;(2)该月生产甲、乙两种塑料分别为300吨和2吨时总利润最大,最大总利润是790000元.
【解析】
(1)因为利润=总收入﹣总支出,由表格可知,y1=(2100﹣800﹣200)x=1100x,y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
(2)可设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,建立W与x之间的解析式,又因甲、乙两种塑料均不超过2吨,所以x≤2,700﹣x≤2,这样就可求出x的取值范围,然后再根据函数中y随x的变化规律即可解决问题.
【详解】
详解:(1)依题意得:y1=(2100﹣800﹣200)x=1100x,
y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
(2)设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,依题意得:W=1100x+1200(700﹣x)﹣20000=﹣100x+1.
∵,
解得:300≤x≤2.
∵﹣100<0,
∴W随着x的增大而减小,
∴当x=300时,W最大=790000(元).
此时,700﹣x=2(吨).
因此,生产甲、乙塑料分别为300吨和2吨时总利润最大,最大利润为790000元.
本题需仔细分析表格中的数据,建立函数解析式,值得一提的是利用不等式组求自变量的取值范围,然后再利用函数的变化规律求最值这种方法.
题号
一
二
三
四
五
总分
得分
出厂价
成本价
排污处理费
甲种塑料
2100(元/吨)
800(元/吨)
200(元/吨)
乙种塑料
2400(元/吨)
1100(元/吨)
100(元/吨)
另每月还需支付设备管理、维护费20000元
相关试卷
这是一份2024年江苏省南通市启秀中学九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市崇川区启秀中学数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,四象限D.当x=时,y=1,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省南通市启秀中学数学九年级第一学期开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。