开学活动
搜索
    上传资料 赚现金

    2024年湖北省恩施州东城中学数学九上开学经典试题【含答案】

    2024年湖北省恩施州东城中学数学九上开学经典试题【含答案】第1页
    2024年湖北省恩施州东城中学数学九上开学经典试题【含答案】第2页
    2024年湖北省恩施州东城中学数学九上开学经典试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖北省恩施州东城中学数学九上开学经典试题【含答案】

    展开

    这是一份2024年湖北省恩施州东城中学数学九上开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列图形中,是中心对称但不是轴对称图形的有( )
    A.1个B.2个C.3个D.4个
    2、(4分)如图,折叠菱形纸片ABCD,使得A′D′对应边过点C,若∠B=60°,AB=2,当A′E⊥AB时,AE的长是( )
    A.2B.2C.D.1+
    3、(4分)若在实数范围内有意义,则x的取值范围是( )
    A.x>-4B.x≥-4C.x>-4且x≠1D.x≥-4且x≠-1
    4、(4分)如图,在平行四边形中,∠A=40°,则∠B的度数为( )
    A.100°B.120°C.140°D.160°
    5、(4分)若y=x+2–b是正比例函数,则b的值是( )
    A.0B.–2C.2D.–0.5
    6、(4分)若点A(–2,)、B( –1,)、C(1,)都在反比例函数(为常数)的图像上,则、、的大小关系为( )
    A.B.C.D.
    7、(4分)如图所示,在直角坐标系内,原点O恰好是▱ABCD对角线的交点,若A点坐标为(2,3),则C点坐标为( )
    A.(-3,-2)B.(-2,3)C.(-2,-3)D.(2,-3)
    8、(4分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
    A.平均数不变,方差不变B.平均数不变,方差变大
    C.平均数不变,方差变小D.平均数变小,方差不变
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.
    10、(4分)若一次函数的图象如图所示,点在函数图象上,则关于x的不等式kx+b≤4的解集是________.
    11、(4分)点在函数的图象上,则__________
    12、(4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.
    13、(4分)不等式的正整数解有______个
    三、解答题(本大题共5个小题,共48分)
    14、(12分)4月23日世界读书日之际,总书记提倡和鼓励大家多读书、读好书.在接受俄罗斯电视台专访时,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”为响应号召,建设书香校园,某初级中学对本校初一、初二两个年级的学生进行了课外阅读知识水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
    (收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下
    (整理数据)按如下分段整理样本数据:
    (分析数据)对样本数据进行如下统计:
    (得出结论)
    (1)根据统计,表格中a、b、c、d的值分别是______、______、______、______.
    (2)若该校初一、初二年级的学生人数分别为1000人和1200人,请估计该校初一、初二年级这次考试成绩90分以上的总人数.
    15、(8分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.
    (1)这次调查获取的样本容量是 .(直接写出结果)
    (2)这次调查获取的样本数据的众数是 ,中位数是 .(直接写出结果)
    (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
    16、(8分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
    (1)求此抛物线的解析式;
    (2)求S△ABC的面积.
    17、(10分)如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.
    (1)求证:BF=DF;
    (2)如图2,过点D作DG∥BE交BC于点G,连接FG交BD于点O,若AB=6,AD=8,求FG的长.
    18、(10分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
    (1)求证:四边形AODE是矩形;
    (2)若AB=2,AC=2,求四边形AODE的周长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,直线 y=x+1 与 y 轴交于点 A1,以 OA1为边,在 y 轴右侧作正方形 OA1B1C1,延长 C1B1交直线 y=x+1 于点 A2,再以 C1A2为边作正方形,…,这些正方形与直线 y=x+1 的交点分别为 A1,A2,A3,…,An,则点 Bn 的坐标为_______.
    20、(4分)已知,在梯形中,,,,,那么下底的长为__________.
    21、(4分)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售
    22、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.
    23、(4分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.
    25、(10分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:
    乙校成绩统计表
    (1)在图①中,“80分”所在扇形的圆心角度数为________;
    (2)请你将图②补充完整;
    (3)求乙校成绩的平均分;
    (4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
    26、(12分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
    (1)经过多长时间,四边形PQCD是平行四边形?
    (2)经过多长时间,四边形PQBA是矩形?
    (3)经过多长时间,当PQ不平行于CD时,有PQ=CD.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:第1个图形,是轴对称图形,不是中心对称图形,故错误;
    第2个图形,不是轴对称图形,是中心对称图形,故正确;
    第3个图形,不是轴对称图形,是中心对称图形,故正确;
    第4个图形,是轴对称图形,也是中心对称图形,故错误;
    故选B.
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、B
    【解析】
    先延长AB,D'A'交于点G,根据三角形外角性质以及等腰三角形的判定,即可得到BC=BG=BA,设AE=x=A'E,则BE=2−x,GE=4−x,A'G=2x,在Rt△A'GE中,依据勾股定理可得A'E2+GE2=A'G2,进而得出方程,解方程即可.
    【详解】
    解:如图所示,延长AB,D'A'交于点G,
    ∵A'E⊥AB,∠EA'C=∠A=120°,
    ∴∠BGC=120°﹣90°=30°,
    又∵∠ABC=60°,
    ∴∠BCG=60°﹣30°=30°,
    ∴∠BGC=∠BCG=30°,
    ∴BC=BG=BA,
    设AE=x=A'E,则BE=AB﹣AE=2﹣x,A'G=2x,
    ∴GE=BG+BE=2+2﹣x=4﹣x,
    ∵Rt△A'GE中,A'E2+GE2=A'G2,
    ∴x2+(4﹣x)2=(2x)2,
    解得:x=﹣2+2,(负值已舍去)
    ∴AE=2﹣2,
    故选B.
    本题主要考查了折叠问题,等腰三角形的判定,菱形的性质,解一元二次方程以及勾股定理的运用;解决问题的关键是作辅助线构造直角三角形,依据勾股定理列方程求解.
    3、D
    【解析】
    直接利用二次根式有意义的条件结合分式有意义的条件进行求解即可得.
    【详解】
    若在实数范围内有意义,
    则x+4≥0且x+1≠0,
    解得:x≥-4且x≠-1,
    故选D.
    本题考查了二次根式有意义的条件和分式有意义的条件,正确把握相关知识是解题关键.
    4、C
    【解析】
    根据平行四边形的性质,即可得出答案.
    【详解】
    ∵平行四边形ABCD,
    ∴AD∥BC,
    ∴∠A+∠B=180°,
    ∵∠A=40°,
    ∴∠B=180°-40°=140°,
    故选C.
    此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
    5、C
    【解析】
    根据正比例函数的定义可得关于b的方程,解出即可.
    【详解】
    解:由正比例函数的定义可得:2-b=0,
    解得:b=2.
    故选C.
    考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.
    6、C
    【解析】
    首先根据可得反比例函数的图象在第一、三象限,因此可得在x的范围内,随着x的增大,y在减小,再结合A、B、C点的横坐标即可得到、、的大小关系.
    【详解】
    解:根据,可得反比例函数的图象在第一、三象限
    因此在x的范围内,随着x的增大,y在减小
    因为A、B两点的横坐标都小于0,C点的横坐标大于0
    因此可得
    故选C.
    本题主要考查反比例函数的性质,关键在于判断反比例函数的系数是否大于0.
    7、C
    【解析】
    根据图像,利用中心对称即可解题.
    【详解】
    由题可知▱ABCD关于点O中心对称,
    ∴点A和点C关于点O中心对称,
    ∵A(2,3),
    ∴C(-2,-3)
    故选C.
    本题考查了中心对称,属于简单题,熟悉中心对称的点的坐标变换是解题关键.
    8、C
    【解析】
    解: =(160+165+170+163+1)÷5=165,S2原=, =(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.
    【详解】
    ∵π•OA42=π•OA12,
    ∴O A42=OA12,
    ∴O A4=OA1;
    ∵π•OA32=π•OA12,
    ∴O A32=OA12,
    ∴O A3=OA1;
    ∵π•OA22=π•OA12,
    ∴O A22=OA12,
    ∴O A2=OA1;
    ∵OA1=R
    因此这三个圆的半径为:O A2=R,O A3=R,O A4=R.
    ∴OA4:OA3:OA2:OA1=
    由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=
    故答案为:(1);(2).
    本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.
    10、x≤1
    【解析】
    根据函数图象确定其解集.
    【详解】
    点P(1,4)在一次函数y=kx+b(k≠0)的图象上,则
    当 kx+b≤4时,y≤4,
    故关于x的不等式kx+b≤4的解集为点P及其左侧部分图象对应的横坐标的集合,
    ∵P的横坐标为1,
    ∴不等式kx+b≤4的解集为:x≤1.
    故答案为:x≤1.
    考查了一次函数与一元一次不等式的关系,解决此类试题时注意:一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    11、
    【解析】
    把点A(m,m+5)代入得到关于m的一元一次方程,解之即可.
    【详解】
    解:把点A(m,m+5)代入得:
    m+5=-2m+1
    解得:m=.
    本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.
    12、
    【解析】
    由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.
    故答案为
    13、3
    【解析】
    根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得解集,再确定其正整数解即可.
    【详解】
    去括号,得:3x+3≥5x-3,
    移项,得:3x-5x≥-3-3,
    合并同类项,得:-2x≥-6,
    系数化为1,得:x≤3,
    ∴该不等式的正整数解为:1,2,3,共有3个,
    故答案为:3
    本题考查了解一元一次不等式以及求一元一次不等式的正整数解,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
    三、解答题(本大题共5个小题,共48分)
    14、(1)4,8,87,1;(2)800人.
    【解析】
    (1)利用收集的数据以及中位数,众数的定义即可解决问题.
    (2)利用样本估计总体的思想解决问题即可.
    【详解】
    解:(1)由数据可知初二年级60≤x<70的有4人,80≤x<90有8人,初一年级20人,中间两个数是86,1,故中位数==87,初二年级20人,出现次数最多的是1.故众数是1.由题意a=4,b=8,c=87,d=1.
    故答案为:4,8,87,1.
    (2)初一年级成绩90分以上的人数为1000×=300(人),
    初二年级成绩90分以上的人数为1200×=500(人)
    300+500=800(人)
    答:初一、初二年级这次考试成绩90分以上的总人数为800人.
    本题考查方差,平均数,中位数,众数,样本估计总体等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.
    15、(1)40;(2)30,50;(3)50500元
    【解析】
    (1)根据条形统计图中的数据可以求得这次调查获取的样本容量;
    (2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;
    (3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.
    【详解】
    解:(1)样本容量是:6+12+10+8+4=40,
    (2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50;
    (3)×1000=50500(元),
    答:该校本学期计划购买课外书的总花费是50500元.
    故答案为(1)40;(2)30,50;(3)50500元.
    本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    16、 (1) y=x2+2x﹣3;(2)1.
    【解析】
    (1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值;
    (2)根据(1)中抛物线的解析式可求出C点的坐标,然后根据三角形的面积公式即可求出△ABC的面积.
    【详解】
    (1)当x=0时,y=x﹣3=﹣3,则B(0,﹣3);
    当y=0时,x﹣3=0,解得x=3,则A(3,0),
    把A(3,0),B(0,﹣3)代入y=x2+bx﹣c得,解得,
    ∴抛物线的解析式为y=x2+2x﹣3;
    (2)当y=0时,x2+2x﹣3=0,解得x1=﹣1,x2=3,则C(﹣1,0),
    ∴S△ABC=×(3+1)×3=1.
    本题主要考查了一次函数与坐标轴的交点,二次函数解析式的确定、三角形面积的求法等知识点.考查了学生数形结合的数学思想方法.
    17、(1)证明见解析;(2).
    【解析】
    (1)根据两直线平行内错角相等及折叠特性判断;
    (2)根据已知矩形性质及第一问证得邻边相等判断四边形BFDG是菱形,再根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    (1)证明:根据折叠得,∠DBC=∠DBE,
    又AD∥BC,
    ∴∠DBC=∠ADB,
    ∴∠DBE=∠ADB,
    ∴DF=BF;
    (2)∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴FD∥BG,
    又∵DG∥BE,
    ∴四边形BFDG是平行四边形,
    ∵DF=BF,
    ∴四边形BFDG是菱形;
    ∵AB=6,AD=8,
    ∴BD=1.
    ∴OB= BD=2.
    假设DF=BF=x,∴AF=AD-DF=8-x.
    ∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,
    解得x=,
    即BF=,
    ∴,
    ∴FG=2FO=.
    此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
    18、(1)见解析;(2)四边形AODE的周长为2+2.
    【解析】
    (1)根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;
    (2)由菱形的性质和勾股定理求出OB,得出OD,由矩形的性质即可得出答案.
    【详解】
    (1)证明:∵DE∥AC,AE∥BD,
    ∴四边形AODE是平行四边形,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴∠AOD=∠AOD=90°,
    ∴四边形AODE是矩形;
    (2)∵四边形ABCD为菱形,
    ∴AO=AC=1,OD=OB,
    ∵∠AOB=90°,
    ∴OB=,
    ∴OD=,
    ∵四边形AODE是矩形,
    ∴DE=OA=1,AE=OD=,
    ∴四边形AODE的周长=2+2.
    本题考查了菱形的性质、矩形的判定与性质、勾股定理、平行四边形的判定;熟练掌握矩形的判定与性质和菱形的性质是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (2n-1,2(n-1)).
    【解析】
    首先求出B1,B2,B3的坐标,根据坐标找出规律即可解题.
    【详解】
    解:由直线y=x+1,知A1(0,1),即OA1=A1B1=1,
    ∴B1的坐标为(1,1)或[21-1,2(1-1)];
    那么A2的坐标为:(1,2),即A2C1=2,
    ∴B2的坐标为:(1+2,2),即(3,2)或[22-1,2(2-1)];
    那么A3的坐标为:(3,4),即A3C2=4,
    ∴B3的坐标为:(1+2+4,4),即(7,4)或[23-1,2(3-1)];
    依此类推,点Bn的坐标应该为(2n-1,2(n-1)).
    本题属于规律探究题,中等难度.求出点B坐标,找出规律是解题关键.
    20、11
    【解析】
    首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,得CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.
    【详解】
    解:如图,过A作AE∥DC交BC与E,
    ∵AD∥BC,
    ∴四边形AECD是平行四边形,
    ∴AD=EC=5,AE=CD,
    ∵AB=CD=6,
    ∴AE=AB=6,
    ∵∠B=60°,
    ∴△ABE是等边三角形,
    ∴BE=AB=6,
    ∴BC=6+5=11,
    故答案为11.
    此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.
    21、8
    【解析】
    设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.
    【详解】
    设该文具盒实际价格可打x折销售,由题意得:
    6×-4≥4×20%,
    解得:x≥8,
    故答案为8.
    本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.
    22、
    【解析】
    设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.
    【详解】
    解:设一次函数解析式为y=kx+b,
    把(0,-1)代入得b=-1,
    ∵直线y=kx+b与直线y=1-3x平行,
    ∴k=-3,
    ∴一次函数解析式为y=-3x-1.
    故答案为:y=-3x-1.
    本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
    23、1。
    【解析】
    试题分析: ∵四边形ABCD是矩形,
    ∴OA=OB
    又∵∠AOB=60°
    ∴△AOB是等边三角形.
    ∴AB=OA=AC=1,
    故答案是:1.
    考点:含30度角的直角三角形;矩形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、4
    【解析】
    根据矩形的性质得到BC=AD=8,∠B=90°,再根据折叠的性质得BE=EF=3,∠AFE=∠B=90°,则可计算出CE=5,然后在Rt△CEF中利用勾股定理计算FC.
    【详解】
    解:∵四边形是矩形,




    在中,

    本题考查了折叠的性质:叠前后图形的形状和大小不变,对应边和对应角相等.也考查了矩形的性质以及勾股定理.
    25、 (1)54°;(2)补图见解析;(3)85分;(4)甲校20名同学的成绩相对乙校较整齐.
    【解析】
    试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;
    (2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;
    (3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;
    (4)根据方差的意义即可做出评价.
    试题解析:(1)6÷30%=20,
    3÷20=15%,
    360°×15%=54°;
    (2)20-6-3-6=5,统计图补充如下:
    (3)20-1-7-8=4,
    =85;
    (4)∵S甲2<S乙2,
    ∴甲班20同名同学的成绩比较整齐.
    26、 (1)1s;(2) s;(3)3s.
    【解析】
    (1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;
    (2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;
    (3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可.
    【详解】
    (1)设经过t(s),四边形PQCD为平行四边形
    即PD=CQ
    所以24-t=3t,
    解得:t=1.
    (2)设经过t(s),四边形PQBA为矩形,
    即AP=BQ,
    所以t=21-3t,
    解得:t=.
    (3)设经过t(s),四边形PQCD是等腰梯形.
    过Q点作QE⊥AD,过D点作DF⊥BC,
    ∴∠QEP=∠DFC=90°
    ∵四边形PQCD是等腰梯形,
    ∴PQ=DC.
    又∵AD∥BC,∠B=90°,
    ∴AB=QE=DF.
    在Rt△EQP和Rt△FDC中,

    ∴Rt△EQP≌Rt△FDC(HL).
    ∴FC=EP=BC-AD=21-24=2.
    又∵AE=BQ=21-3t,
    ∴EP=AP-AE=t-(21-3t)=2.
    得:t=3.
    ∴经过3s,PQ=CD.
    此题主要考查平行四边形、矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解.
    题号





    总分
    得分
    初一年级
    88
    60
    44
    91
    71
    88
    97
    63
    72
    91
    81
    92
    85
    85
    95
    31
    91
    89
    77
    86
    初二年级
    77
    82
    85
    88
    76
    87
    69
    93
    66
    84
    90
    88
    67
    88
    91
    96
    68
    97
    59
    88
    分段
    年级
    0≤x<60
    60≤x<70
    70≤x<80
    80≤x<90
    90≤x≤100
    初一年级
    2
    2
    3
    7
    6
    初二年级
    1
    a
    2
    b
    5
    统计量
    年级
    平均数
    中位数
    众数
    方差
    初一年级
    78.85
    c
    91
    291.53
    初二年级
    81.95
    86
    d
    115.25
    分数/分
    人数/人
    70
    7
    80
    90
    1
    100
    8

    相关试卷

    2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】:

    这是一份2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河南省周口一中学数学九上开学经典试题【含答案】:

    这是一份2024年河南省周口一中学数学九上开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河南省漯河五中学数学九上开学经典试题【含答案】:

    这是一份2024年河南省漯河五中学数学九上开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map