|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】01
    2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】02
    2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】

    展开
    这是一份2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
    A.3cmB.4cmC.5cmD.6cm
    2、(4分)最早记载勾股定理的我国古代数学名著是( )
    A.《九章算术》B.《周髀算经》C.《孙子算经》D.《海岛算经》
    3、(4分)若实数a,b,c满足,且,则函数的图象一定不经过
    A.第四象限B.第三象限C.第二象限D.第一象限
    4、(4分)在一次数学测验中,一学习小组七人的成绩如表所示:
    则这七人成绩的中位数是( )
    A.22B.89C.92D.96
    5、(4分)若一个正多边形的一个外角是30°,则这个正多边形的边数是( )
    A.9B.10C.11D.12
    6、(4分)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为
    A.B.C.D.
    7、(4分)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
    ①线段MN的长;
    ②△PAB的周长;
    ③△PMN的面积;
    ④直线MN,AB之间的距离;
    ⑤∠APB的大小.
    其中会随点P的移动而变化的是( )
    A.②③B.②⑤C.①③④D.④⑤
    8、(4分)如图,在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( ).
    A.6B.9C.10D.12
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB于点F,交DC的延长线于点G,则DE=_____.
    10、(4分)若个数,,,的中位数为,则_______.
    11、(4分)分解因式:___.
    12、(4分)把直线沿轴向上平移5个单位,则得到的直线的表达式为_________.
    13、(4分)已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:
    表1 演讲答辩得分表(单位:分)
    表2 民主测评票数统计表(单位:张)
    规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;
    民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;
    综合得分=演讲答辩得分×(1﹣a)+民主测评得分×a(0.5≤a≤0.8).
    (1)当a=0.6时,甲的综合得分是多少?
    (2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
    15、(8分)先化简,再求的值,其中x=2
    16、(8分)如图,AD=CB,AB=CD,求证:△ACB≌△CAD
    17、(10分)某市篮球队在市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,如图记录的是这两名同学5次投篮中所投中的个数.
    (1)请你根据图中的数据,填写上表.
    (2)你认为谁的成绩比较稳定,为什么?
    (3)若你是教练,你打算选谁?简要说明理由.
    18、(10分)某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.
    (1)求出y与m之间的函数关系式;
    (2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知正比例函数图象经过点(4,﹣2),则该函数的解析式为_____.
    20、(4分) 用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.
    21、(4分)已知反比例函数 y=的图像都过A(1,3)则m=______.
    22、(4分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
    23、(4分)在梯形ABCD中,AD∥BC,如果AD=4,BC=10,E、F分别是边AB、CD的中点,那么EF=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,直线分别与轴,轴交于点.点是轴负半轴上一点,
    (1)求点和点的坐标;
    (2)求经过点和的一次函数的解析式.
    25、(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.
    26、(12分)如图,在矩形中,点为上一点,连接、,.
    (1)如图1,若,,求的长.
    (2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
    详解:设CN=xcm,则DN=(8﹣x)cm,
    由折叠的性质知EN=DN=(8﹣x)cm,
    而EC=BC=4cm,
    在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
    即(8﹣x)2=16+x2,
    整理得16x=48,
    所以x=1.
    故选:A.
    点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
    2、B
    【解析】
    由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.
    【详解】
    最早记载勾股定理的我国古代数学名著是《周髀算经》,
    故选:B.
    考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.
    3、C
    【解析】
    先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.
    【详解】
    解:,且,
    ,,的正负情况不能确定,

    函数的图象与y轴负半轴相交,

    函数的图象经过第一、三、四象限.
    故选C.
    本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.
    4、D
    【解析】
    根据中位数的定义求解即可.
    【详解】
    ∵从小到大排列后,成绩排在第四位的是96分,
    ∴中位数是96.
    故选D.
    此题主要考查了中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
    5、D
    【解析】
    首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.
    【详解】
    根据题意正多边形的一个外角是30°
    它的内角为:
    所以根据正多边形的内角公式可得:
    可得
    故选D.
    本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.
    6、B
    【解析】
    根据折叠前后对应角相等即可得出答案.
    【详解】
    解:设∠ABE=x,
    根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
    所以50°+x+x=90°,
    解得x=20°.
    故选B.
    本题考核知识点:轴对称. 解题关键点:理解折叠的意义.
    7、B
    【解析】
    试题分析:
    ①、MN=AB,所以MN的长度不变;
    ②、周长C△PAB=(AB+PA+PB),变化;
    ③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
    ④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
    ⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
    故选B
    考点:动点问题,平行线间的距离处处相等,三角形的中位线
    8、D
    【解析】
    根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.
    【详解】
    ∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,
    ∴∠ADC=90°,
    ∵点E为AC的中点,
    ∴DE=CE=AC=.
    ∵△CDE的周长为21,
    ∴CD=6,
    ∴BC=2CD=1.
    故选D.
    此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    由平行四边形的性质得出CD=AB=3,BC=AD=4,AB∥CD,由平行线的性质得出∠GCE=∠B=60°,证出EF⊥DG,由含30°角的直角三角形的性质得出CG=CE=1,求出EG=CG=,DG=CD+CG=4,由勾股定理求出DE即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴CD=AB=3,BC=AD=4,AB∥CD,
    ∴∠GCE=∠B=60°,
    ∵E是BC的中点,
    ∴CE=BE=2,
    ∵EF⊥AB,
    ∴EF⊥DG,
    ∴∠G=90°,
    ∴CG=CE=1,
    ∴EG=CG=,DG=CD+CG=3+1=4,
    ∴DE=;
    故答案为.
    本题考查了平行四边形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的性质,由含30°角的直角三角形的性质求出CG是解决问题的关键.
    10、
    【解析】
    根据中位数的概念求解.
    【详解】
    解:∵5,x,8,10的中位数为7,
    ∴,
    解得:x=1.
    故答案为:1.
    本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    11、
    【解析】
    直接利用平方差公式分解因式得出即可.
    【详解】
    ,
    ,

    故答案为:.
    此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.
    12、
    【解析】
    根据上加下减,左加右减的法则可得出答案.
    【详解】
    解:沿y轴向上平移5个单位得到直线:,
    即.
    故答案是:.
    本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.
    13、2
    【解析】
    图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.
    【详解】
    解:∵图象经过第一、二、三象限,
    ∴直线与y轴的交点在正半轴上,则b>2.
    ∴符合条件的b的值大于2即可.
    ∴b=2,
    故答案为2.
    考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.
    三、解答题(本大题共5个小题,共48分)
    14、(1)89分(2)当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高
    【解析】
    (1)由题意可知:分别计算出甲的演讲答辩得分以及甲的民主测评得分,再将a=0.6代入公式计算可以求得甲的综合得分;
    (2)同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,则乙的综合得分=89(1−a)+88a,甲的综合得分=92(1−a)+87a,再分别比较甲、乙的综合得分,甲的综合得分高时即当甲的综合得分>乙的综合得分时,可以求得a的取值范围;同理甲的综合得分高时即当甲的综合得分<乙的综合得分时,可以求得a的取值范围.
    【详解】
    (1)甲的演讲答辩得分==92(分),
    甲的民主测评得分=40×2+7×1+3×0=87(分),
    当a=0.6时,甲的综合得分=92×(1−0.6)+87×0.6=36.8+52.2=89(分);
    答:当a=0.6时,甲的综合得分是89分;
    (2)∵乙的演讲答辩得分==89(分),
    乙的民主测评得分=42×2+4×1+4×0=88(分),
    ∴乙的综合得分为:89(1−a)+88a,甲的综合得分为:92(1−a)+87a,
    当92(1−a)+87a>89(1−a)+88a时,即有a<,
    又0.5≤a≤0.8,
    ∴0.5≤a<0.75时,甲的综合得分高;
    当92(1−a)+87a<89(1−a)+88a时,即有a>,
    又0.5≤a≤0.8,
    ∴0.75<a≤0.8时,乙的综合得分高.
    答:当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高.
    本题考查的是平均数的求法.同时还考查了解不等式,本题求a的范围时要注意“0.5≤a≤0.8”这个条件.
    15、 , .
    【解析】
    首先把分式利用通分、约分化简,然后代入数值计算即可求解.
    【详解】
    解:
    =
    =
    = ,
    当x=3时,原式= = .
    本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.
    16、见解析
    【解析】
    利用SSS即可证明.
    【详解】
    证明:在△ACB与△CAD中
    ∴△ACB≌△CAD(SSS)
    本题考查的是全等三角形的判定,能够根据SSS证明三角形全等是解题的关键.
    17、 (1)从左到右依次填7,7,0.4;(2)王亮的成绩比较稳定;(3)选王亮,理由见解析.
    【解析】
    (1)根据平均数的定义,计算5次投篮成绩之和与5的商即为李亮每次投篮平均数;根据众数定义,王刚投篮出现次数最多的成绩即为其众数;先算出王亮的成绩的平均数,再根据方差公式计算王亮的投篮次数的方差.
    (2)比较他们两人的方差的大小,方差越小越稳定;
    (3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要
    【详解】
    解:(1) 李刚投篮的平均数为:(4+7+7+8+9)÷5=7个,
    王亮5次投篮,有3次投中7个,故7为众数;
    王亮的方差为:S2=[(6-7)2+(7-7)2+(8-7)2+(7-7)2+(7-7)2]=0.4个
    (2)王亮的成绩比较稳定.两人投中个数的平均数相同;从方差上看,王亮投中个数的方差小于李刚投中个数的方差,所以王亮的成绩比较稳定.
    (3)选王亮,理由是成绩稳定或者选李刚,理由是他具有发展潜力,李刚越到后面投中个数越多.
    此题是方差题,考查了实际问题,将数学知识与实际生活相联系,有利于培养学生学数学,用数学的意识,同时体现了数学来源于生活,应用于生活的本质.
    18、(1)=﹣200+15000(20≤m<30);(2) 购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
    【解析】
    (1)利润=一辆A型电动自行车的利润×A型电动自行车的数量+一辆B型电动自行车的利润×B型电动自行车的数量,依此列式化简即可;
    (2)根据一次函数的性质,结合自变量的取值范围即可求解;
    【详解】
    解:(1)计划购进A型电动自行车辆,B型电动自行车(30-)辆,
    =(2800-2500)m+(3500﹣3000)(30﹣m),
    =﹣200+15000(20≤m<30),
    (2)∵20≤<30,且随的增大而减小可得,=20时,有最大值,
    =﹣200×20+15000=11000,
    购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
    本题考查了一次函数的应用,解题的关键是求出y与m之间的函数关系式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=﹣x
    【解析】
    设正比例函数的解析式为y=kx(k≠0),然后将点(4,-2)代入该解析式列出关于系数k的方程,通过解方程即可求得k的值.
    【详解】
    解:设正比例函数的解析式为y=kx(k≠0).
    ∵正比例函数图象经过点(4,-2),
    ∴-2=4k,
    解得,k=,
    ∴此函数解析式为:y=x;
    故答案是:y=x.
    本题考查了待定系数法确定函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    20、三角形的三个内角都小于60°
    【解析】
    熟记反证法的步骤,直接填空即可.
    【详解】
    第一步应假设结论不成立,即三角形的三个内角都小于60°.
    故答案为三角形的三个内角都小于60°.
    反证法的步骤是:
    (1)假设结论不成立;
    (2)从假设出发推出矛盾;
    (3)假设不成立,则结论成立.
    在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
    21、1.
    【解析】
    把点A(1,1)代入函解析式即可求出m的值.
    【详解】
    解:把点A(1,1)代入函解析式得1=,解得m=1.
    故答案为:1.
    本题考查反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.
    22、150°
    【解析】
    首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
    【详解】
    解:连接PQ,
    由题意可知△ABP≌△CBQ
    则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
    ∵△ABC是等边三角形,
    ∴∠ABC=∠ABP+∠PBC=60°,
    ∴∠PBQ=∠CBQ+∠PBC=60°,
    ∴△BPQ为等边三角形,
    ∴PQ=PB=BQ=4,
    又∵PQ=4,PC=5,QC=3,
    ∴PQ2+QC2=PC2,
    ∴∠PQC=90°,
    ∵△BPQ为等边三角形,
    ∴∠BQP=60°,
    ∴∠BQC=∠BQP+∠PQC=150°
    ∴∠APB=∠BQC=150°
    本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.
    23、1.
    【解析】
    根据梯形中位线定理得到EF=(AD+BC),然后把AD=4,BC=10代入可求出EF的长.
    【详解】
    ∵E,F分别是边AB,CD的中点,
    ∴EF为梯形ABCD的中位线,
    ∴EF=(AD+BC)=(4+10)=1.
    故答案为1.
    本题考查了梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.
    二、解答题(本大题共3个小题,共30分)
    24、(1)点坐标为,B点坐标为;(2)
    【解析】
    (1)分别令y=0和x=0即可求出A,B两点坐标;
    (2)根据等腰三角形的性质得出点C的坐标,再利用待定系数法求出直线AC的解析式即可.
    【详解】
    (1)由图可知:点纵坐标为0,将代人,得,
    所以点坐标为
    B点横坐标为,将代入得,
    所以点坐标为;
    (2)∵A(4,0),B(0,3)
    ∴AO=4,BO=3,

    点坐标为
    设过点的一次函数的解析式为,
    将A(4,0),C(0,-2)分别代入,得,
    解得,,
    经过点和的一次函数的解析式为
    此题主要考查了一次函数解析式以及与坐标轴交点的求法,熟练掌握待定系数法是解题的关键.
    25、,2
    【解析】
    试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.
    试题解析:原式=·=
    当a=0时,原式==2.
    考点:分式的化简求值.
    26、(1);(2)见解析
    【解析】
    (1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;
    (2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.
    【详解】
    解:(1)∵矩形,∴
    又∵

    设,在中,

    解得:,(舍)

    ∵矩形∴,

    在中,,
    ∴;
    (2)如答图,延长交的延长线于
    ∵,∴
    又∵为的中点,∴
    在和中

    ∴,
    ∵,




    本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.
    题号





    总分
    得分
    成绩(分)
    78
    89
    96
    100
    人数
    1
    2
    3
    1
    A
    B
    C
    D
    E

    90
    92
    94
    95
    88

    89
    86
    87
    94
    91
    “好”票数
    “较好”票数
    “一般”票数

    40
    7
    3

    42
    4
    4
    姓名
    平均数(个)
    众数(个)
    方差
    王亮
    7
    李刚
    7
    2.8
    相关试卷

    2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限,则m的取值范围是,解答题等内容,欢迎下载使用。

    2024-2025学年福建省厦门市思明区第六中学九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年福建省厦门市思明区第六中学九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省厦门市六中学数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年福建省厦门市六中学数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map