|试卷下载
搜索
    上传资料 赚现金
    第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(教师版).docx
    • 学生
      第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(学生版).docx
    第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)01
    第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)02
    第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)03
    第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)01
    第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)02
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)

    展开
    这是一份第10讲 卡根思想在导数中的应用(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用),文件包含第10讲卡根思想在导数中的应用高阶拓展竞赛适用教师版docx、第10讲卡根思想在导数中的应用高阶拓展竞赛适用学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    (核心考点精讲精练)
    1. 5年真题考点分布
    2. 命题规律及备考策略
    【命题规律】本节内容是新高考卷的载体内容,设题稳定,难度较大,分值为15-17分
    【备考策略】1能用导数解决函数基本问题
    2能用卡根思想结合零点存在性定理综合解题
    【命题预测】在零点个数及方程的根等综合问题研究中,参变分离和数形结合都是解题的方法,但也都有局限性,同时对函数图像画法要求较高;包括在零点个数研究中还有放缩方法,但是放缩的不等式变化较多,这样对学生又提出了比较严苛能力要求。此时卡根法是此类题型的另一方法。同时卡根法也常应用于导数研究函数性质的过程中,其本质是虚设零点(设而不求),利用零点满足的关系式化简,从而得到范围或符号。高考中常用的解题方法,需要学生复习中综合掌握
    知识讲解
    “卡根”问题的一般方法,其具体步骤如下
    根据函数的增长速度判断函数值变化的趋势,以便确定是否存在零点;
    根据函数表达式的特点进行拆分,一般拆分成和或乘积形式;
    根据函数的增长速度,将指、对数函数放缩成幂函数及其和的形式;
    根据相关不等式的解集,利用零点存在定理来确定零点存在的区间
    零点存在性定理:
    如果函数在区间上的图像是连续不断的一条曲线,并且有,那么函数在区间内必有零点,即,使得
    注:零点存在性定理使用的前提是在区间连续,如果是分段的,那么零点不一定存在
    考点一、卡根思想在导数中的综合应用
    1.(2023·全国·高考真题)已知函数
    (1)当时,讨论的单调性;
    (2)若恒成立,求a的取值范围.
    2.(2023·全国·高考真题)已知函数.
    (1)当时,求曲线在点处的切线方程;
    (2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.
    (3)若在存在极值,求a的取值范围.
    3.(2022·全国·高考真题)已知函数
    (1)当时,求曲线在点处的切线方程;
    (2)若在区间各恰有一个零点,求a的取值范围.
    4.(2022·全国·高考真题)已知函数和有相同的最小值.
    (1)求a;
    (2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
    1.已知函数,.
    (1)求函数的单调区间;
    (2)令,若在恒成立,求整数a的最大值.
    参考数据:,
    2.已知函数,.
    (1)求函数的单调区间;
    (2)若关于的不等式恒成立,求整数的最小值.
    3.已知函数,.
    (1)函数的图象与的图象无公共点,求实数a的取值范围;
    (2)是否存在实数m,使得对任意的,都有函数的图象在的图象的下方?若存在,求出整数m的最大值;若不存在,请说明理由.
    1.(2024·福建福州·三模)已知函数.
    (1)求曲线在点处的切线方程;
    (2)若恒成立,求的值
    2.(2024·山东日照·三模)已知函数,,.
    (1)讨论函数的单调性;
    (2)当时,对,,求正整数的最大值.
    3.(2022·全国·模拟预测)已知函数,其中e为自然对数的底数,.
    (1)讨论函数的单调性;
    (2)当a=0时,若存在使得关于x的不等式成立,求k的最小整数值.(参考数据:)
    4.(2023·江西上饶·一模)已知,.
    (1)讨论的单调性;
    (2)若,,试讨论在内的零点个数.(参考数据:)
    5.(2024·浙江绍兴·二模)已知函数.
    (1)当时,求曲线在点处的切线方程;
    (2)当时,,求实数的取值范围.
    6.(2024·河南信阳·模拟预测)已知函数,.
    (1)试比较与的大小;
    (2)若恒成立,求的取值范围.
    7.(2024·安徽安庆·三模)已知函数在点处的切线平行于直线.
    (1)若对任意的恒成立,求实数的取值范围;
    (2)若是函数的极值点,求证:.
    8.(2024·四川绵阳·模拟预测)已知函数.
    (1)讨论的零点个数;
    (2)若关于的不等式在上恒成立,求的取值范围.
    9.(2022·河北唐山·二模)已知函数,,曲线和在原点处有相同的切线l.
    (1)求b的值以及l的方程;
    (2)判断函数在上零点的个数,并说明理由.
    10.(2023·海南海口·二模)已知.
    (1)若在处取到极值,求的值;
    (2)直接写出零点的个数,结论不要求证明;
    (3)当时,设函数,证明:函数存在唯一的极小值点且极小值大于.
    11.(2021·四川南充·模拟预测)已知函数,,,令.
    (1)当时,求函数的单调区间及极值;
    (2)若关于的不等式恒成立,求整数的最小值.
    12.(2024·四川遂宁·模拟预测)已知函数,其中.
    (1)当时,,求a的取值范围.
    (2)若,证明:有三个零点,,(),且,,成等比数列.
    1.(2021·全国·高考真题)已知且,函数.
    (1)当时,求的单调区间;
    (2)若曲线与直线有且仅有两个交点,求a的取值范围.
    2.(2020·全国·高考真题)设函数,曲线在点(,f())处的切线与y轴垂直.
    (1)求b.
    (2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.
    3.(2017·全国·高考真题)已知函数且.
    (1)求a;
    (2)证明:存在唯一的极大值点,且.5年考情
    考题示例
    考点分析
    关联考点
    2023年全国甲卷理数,第21题,12分
    卡根思想在导数中的应用.
    求在曲线上一点处的切线方程
    用导数判断或证明已知函数的单调性
    根据极值求参数
    由函数对称性求函数值或参数
    2023年全国乙卷理数,第21题,12分
    卡根思想在导数中的应用
    利用导数求函数的单调区间 (不含参)
    利用导数研究不等式恒成立问题
    2022年新I卷,第22题,12分
    卡根思想在导数中的应用
    利用导数研究方程的根
    由导数求函数的最值 (含参)
    2022年全国乙卷理数,第21题,12分
    卡根思想在导数中的应用
    求在曲线上一点处的切线方程 (斜率
    利用导数研究函数的零点
    2021年全国甲卷理数,第21题,12分
    卡根思想在导数中的应用
    利用导数求函数的单调区间 (不含参)
    利用导数研究方程的根
    相关试卷

    第19讲 圆锥曲线中的光学性质(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考): 这是一份第19讲 圆锥曲线中的光学性质(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共2页。试卷主要包含了 命题规律及备考策略, 双曲线的光学性质等内容,欢迎下载使用。

    第18讲 圆锥曲线中的极点极线问题(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考): 这是一份第18讲 圆锥曲线中的极点极线问题(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共2页。试卷主要包含了 命题规律及备考策略,求证等内容,欢迎下载使用。

    第16讲 圆锥曲线中的切线方程与切点弦方程(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考): 这是一份第16讲 圆锥曲线中的切线方程与切点弦方程(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共2页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。

    • 精品推荐

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map