终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      新高考一轮复习导学案第50讲 直线与平面、平面与平面平行(原卷版).doc
    • 学案
      新高考一轮复习导学案第50讲 直线与平面、平面与平面平行(解析版).doc
    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)01
    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)02
    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)03
    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)01
    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)02
    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)

    展开
    这是一份新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版),文件包含新高考一轮复习导学案第50讲直线与平面平面与平面平行原卷版doc、新高考一轮复习导学案第50讲直线与平面平面与平面平行解析版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。


    知识梳理
    1. 直线与平面平行
    (1)直线与平面平行的定义
    直线l与平面α没有公共点,则称直线l与平面α平行.
    (2)判定定理与性质定理
    2. 平面与平面平行
    (1)平面与平面平行的定义
    没有公共点的两个平面叫做平行平面.
    (2)判定定理与性质定理
    3. 与垂直相关的平行的判定
    (1)a⊥α,b⊥α⇒a∥b.
    (2)a⊥α,a⊥β⇒α∥β.
    1、设 SKIPIF 1 < 0 , SKIPIF 1 < 0 为两个平面,则 SKIPIF 1 < 0 的充要条件是
    A. SKIPIF 1 < 0 内有无数条直线与 SKIPIF 1 < 0 平行
    B. SKIPIF 1 < 0 内有两条相交直线与 SKIPIF 1 < 0 平行
    C. SKIPIF 1 < 0 , SKIPIF 1 < 0 平行于同一条直线
    D. SKIPIF 1 < 0 , SKIPIF 1 < 0 垂直于同一平面
    2、已知l,m是平面 SKIPIF 1 < 0 外的两条不同直线.给出下列三个论断:
    ①l⊥m;②m∥ SKIPIF 1 < 0 ;③l⊥ SKIPIF 1 < 0 .
    以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
    3、小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.
    (1)证明:平面;
    (2)求该包装盒的容积(不计包装盒材料的厚度).
    4、如图,是三棱锥的高,,,E是的中点.
    (1)证明:平面;
    1、在下列命题中,假命题是( )
    A.若平面α内的一条直线垂直于平面β内的任一直线,则α⊥β
    B.若平面α内任一直线平行于平面β,则α∥β
    C.若平面α⊥平面β,任取直线l SKIPIF 1 < 0 α,则必有l⊥β
    D.若平面α∥平面β,任取直线l SKIPIF 1 < 0 α,则必有l∥β
    2、(多选题)设 SKIPIF 1 < 0 , SKIPIF 1 < 0 为两个平面,下列是“ SKIPIF 1 < 0 ”的充分条件是( )
    A. SKIPIF 1 < 0 , SKIPIF 1 < 0 与平面 SKIPIF 1 < 0 都垂直
    B. SKIPIF 1 < 0 内有两条相交直线与平面 SKIPIF 1 < 0 均无交点
    C.异面直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0
    D. SKIPIF 1 < 0 内有 SKIPIF 1 < 0 个点(任意三点不共线)到 SKIPIF 1 < 0 的距离相等
    3、(多选题)已知m,n是两条不同的直线,α,β是两个不同的平面,则( )
    A.若m//n,nα,则m//αB.若m⊥n,nα,则m⊥α
    C.若m⊥α,n⊥α,则m//nD.若m//α,m//β,α∩β=n,则m//n
    4、(多选题)对于两条不同直线 SKIPIF 1 < 0 和两个不同平面 SKIPIF 1 < 0 ,下列选项中正确的为( )
    A.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 B.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 或 SKIPIF 1 < 0
    C.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 或 SKIPIF 1 < 0 D.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 或 SKIPIF 1 < 0
    考向一 直线与平面平行的判定与性质
    例1、如图,在四棱锥P-ABCD中,AD∥BC,AB=BC= eq \f(1,2)AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE相交于点O,G是线段OF上的一点.求证:
    (1) AP∥平面BEF;
    (2) GH∥平面PAD.
    变式1、如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是BC,PD的中点,求证:
    (1)PB∥平面ACF;
    (2)EF∥平面PAB.
    变式2、如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM上取一点G,过G和PA作平面交BD于点H.
    求证:PA∥GH.
    方法总结:线面平行问题的解题关键
    (1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行,从而证明直线与平面平行.
    (2)应用线面平行性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.
    考向二 面面平行的判定与性质
    例2、如图,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:
    (1) BE∥平面DMF;
    (2) 平面BDE∥平面MNG.
    变式1、如图,在三棱柱ABC-A1B1C1中,E,F,G分别为B1C1,A1B1,AB的中点.
    (1)求证:平面A1C1G∥平面BEF;
    (2)若平面A1C1G∩BC=H,求证:H为BC的中点.
    方法总结:证明面面平行的常用方法
    (1)面面平行的定义,即证两个平面没有公共点(不常用);
    (2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行(主要方法);
    (3)利用垂直于同一条直线的两个平面平行(客观题常用);
    (4)如果两个平面同时平行于第三个平面,那么这两个平面平行(客观题常用);
    (5)利用“线线平行”“线面平行”“面面平行”的相互转化进行证明.
    考向三 平行关系的探索性问题
    例3、如图,已知在三棱柱ABC-A1B1C1中,D是棱CC1的中点,试问在棱AB上是否存在一点E,使得DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.
    变式1、如图,在四棱锥P-ABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.
    (1) 求证:PB∥平面AEC;
    (2) 在PC上求一点G,使FG∥平面AEC,并证明你的结论.
    变式2、如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.
    (1)求证:BD1∥平面AEC;
    (2)CC1上是否存在一点F,使得平面AEC∥平面BFD1,若存在,请说明理由.
    方法总结:(1)利用线面平行或面面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置.对于线段长或线段比例问题,常用平行线对应线段成比例或相似三角形来解决.
    (2)探索性问题要根据题目确立成立的条件,然后当成已知进行证明。
    1、已知m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的是
    A.若m∥α,n∥α,则m∥n
    B.若α⊥β,γ⊥β,且α∩γ=m,则m⊥β
    C.若mα,nα,m∥β,n∥β,则α∥β
    D.若m⊥α,n∥β,α⊥β,则m⊥n
    2、(多选题)在三棱柱ABC-A1B1C1中,E,F,G,H分别为线段AA1,A1C1,C1B1,BB1的中点,下列说法正确的是
    A.E,F,G,H四点共面 B.平面EGH∥平面ABC1
    C.直线A1A与FH异面 D.直线BC与平面AFH平行
    3、)(多选题)已知m,n是两条不同的直线,β,γ是三个不同的平面.下列说法中正确的是
    A.若m∥α,mβ,α∩β=n,则m∥n B.若m∥n,m∥α,则n∥α
    C.若α∩β=n,α⊥γ,β⊥γ,则n⊥γ D.若m⊥α,m⊥β,α∥γ,则β∥γ
    4、在棱长为2的正方体ABCD-A1B1C1D1中,正方形ABCD的中心为E,且圆E是正方形ABCD的内切圆.F为圆E上一点,G为棱BB1上一点(不可与B,B1重合),H为棱A1B1的中点,则( )
    A. |HF|∈[2, SKIPIF 1 < 0 ]B. △B1EG面积的取值范围为(0, SKIPIF 1 < 0 ]
    C. EH和FG是异面直线D. EG和FH可能是共面直线
    5、已知平面α和平面β是空间中距离为2的两平行平面,球面M与平面α、平面β的交线分别为圆A、圆B.
    (1)若平面γ与平面α、平面β的交线分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,证明: SKIPIF 1 < 0 ;
    (2)若球面M的半径为2,求以圆A为上底面,圆B为下底面的几何体AB的体积的最大值.
    6、如图,在多面体 SKIPIF 1 < 0 中,四边形 SKIPIF 1 < 0 是菱形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 平面 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点.
    (1)求证:平面 SKIPIF 1 < 0 平面 SKIPIF 1 < 0 ;
    文字语言
    图形表示
    符号表示
    判定
    定理
    平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面
    a⊄α,b⊂α,
    a∥b⇒a∥α
    性质
    定理
    一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行
    a∥α,a⊂β,
    α∩β=b⇒
    a∥b
    文字语言
    图形表示
    符号表示
    判定
    定理
    一个平面内的两条相交直线与另一个平面平行,则这两个平面平行
    a⊂α,b⊂α,
    a∩b=P,
    a∥β,b∥β⇒
    α∥β
    性质
    定理
    两个平面平行,则其中一个平面内的直线平行于另一个平面
    α∥β,a⊂α⇒a∥β
    如果两个平行平面同时和第三个平面相交,那么它们的交线平行
    α∥β,α∩γ=a,β∩γ=b⇒a∥b
    相关试卷

    新高考数学一轮复习讲义第7章 §7.4 空间直线、平面的平行(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义第7章 §7.4 空间直线、平面的平行(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第7章§74空间直线平面的平行原卷版doc、新高考数学一轮复习讲义第7章§74空间直线平面的平行含解析doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    高考数学一轮复习考点探究与题型突破第41讲直线、平面平行的判定与性质(原卷版+解析): 这是一份高考数学一轮复习考点探究与题型突破第41讲直线、平面平行的判定与性质(原卷版+解析),共16页。试卷主要包含了直线与平面平行,平面与平面平行等内容,欢迎下载使用。

    新高考数学一轮复习过关训练第41课 直线、平面平行的判定与性质(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习过关训练第41课 直线、平面平行的判定与性质(2份打包,原卷版+解析版),文件包含新高考数学一轮复习过关训练第41课直线平面平行的判定与性质原卷版doc、新高考数学一轮复习过关训练第41课直线平面平行的判定与性质解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习导学案第50讲 直线与平面、平面与平面平行(2份打包,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map