所属成套资源:2024年高考第三次模拟考试题:数学
2024年高考第三次模拟考试题:数学(广东专用,2024新题型)(解析版)
展开
这是一份2024年高考第三次模拟考试题:数学(广东专用,2024新题型)(解析版),共13页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.记复数的共轭复数为,若,则( )
A.1B.C.2D.
【答案】C
【解析】依题意,,因此,
所以.故选:C
2.若集合,则( )
A.B.
C.D.
【答案】D
【解析】因为,且,
则.故选:D
3.已知,则( )
A.B.C.D.
【答案】A
【解析】依题意,,
所以.故选:A
4.已知是等比数列,,且,是方程两根,则( )
A.B.C.D.
【答案】C
【解析】因为是等比数列,所以,,又,所以,
又,是方程两根,所以.故选:C
5.中国是瓷器的故乡,中国瓷器的发明是中华民族对世界文明的伟大贡献.下图是明清时期的一件圆台形青花缠枝纹大花盆,其上口直径为20cm,下底直径为18cm,高为24cm,则其容积约为( )
A.B.C.D.
【答案】C
【解析】依题意可得该圆台形大花盆的上底面面积为,
下底面面积为,又高为,
代入圆台体积公式可得.故选:C
6.已知函数是奇函数,则的最小值为( )
A.3B.5C.D.
【答案】C
【解析】令,得,故函数的定义域为.
因为是奇函数,则其定义域关于原点对称,
可得,即,
此时,可得,
可得是奇函数,即符合题意;
故,
当且仅当,即,时等号成立,
故的最小值为,
故选:C.
7.设,为双曲线:的左、右焦点,点为双曲线的左顶点,以为直径的圆交双曲线的渐近线于,两点,且点,分别在第一、三象限,若,则双曲线的离心率为( )
A.B.C.D.
【答案】C
【解析】
根据已知条件,双曲线的渐近线方程为交于、两点,
以为直径的圆的方程为,直线与圆方程联立有:
解得,,所以,所以,,
所以垂直于轴,设为双曲线右顶点,垂直于轴,所以,
又因为,所以,所以,,
所以,所以,即.
故选:C
8.已知是锐角三角形,角,,所对的边分别为,,,为的面积,,则的取值范围为( )
A.B.
C.D.
【答案】A
【解析】依题意,,
,
由解得.
,
由于三角形是锐角三角形,所以,
所以,所以,
所以,
所以.
故选:A
二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)
9.“体育强则中国强,国运兴则体育兴”.为备战2024年巴黎奥运会,已知运动员甲特训的成绩分别为:9,12,8,16,16,18,20,16,12,13,则这组数据的( )
A.众数为12B.平均数为14
C.中位数为14.5D.第85百分位数为16
【答案】BC
【解析】成绩从小到大排列为:.
A:出现次数最多的数为,故A错误;
B:平均数,故B正确;
C:中位数为:,故C正确;
D:第85百分位数为第,即第位,为,故D错误;
故选:BC.
10.已知函数的部分图象如图所示,下列说法正确的是( )
A.函数的周期为
B.函数的图象关于点对称
C.函数在单调递减
D.该图象先向右平移个单位,再把图象上所有的点横坐标伸长为原来的2倍(纵坐标不变),可得的图象
【答案】ABD
【解析】由图像可知:,周期,∴;
由解得:
故函数
对于A:,故A正确;
对于B:故B正确;
对于C:当时,所以在上不单调.故C错误;
对于D:向右平移个单位得到,再把横坐标伸长为原来的2倍,可得的图象,故D正确.
故选:ABD
11.已知抛物线C:的焦点为F,过点的直线l与抛物线C交于A,B两点,设直线l的斜率为k,则下列选项正确的有( )
A.
B.若以线段AB为直径的圆过点F,则
C.若以线段AB为直径的圆与y轴相切,则
D.若以线段AB为直径的圆与x轴相切,则该圆必与抛物线C的准线相切
【答案】ABC
【解析】设,直线的方程为,,的中点为,
由消去并整理得:,得,
由题意,,所以,即,
所以,则,故A正确;
以线段为直径的圆过点,所以,所以,
又,
所以,
,解得满足题意.
由,得,所以B正确;
若以线段AB为直径的圆与y轴相切,则,
又,所以,
解得:,所以,故C正确;
若以线段AB为直径的圆与抛物线C的准线相切,则,即,
又,所以无解,所以D错误.
故选:ABC.
三、填空题:本题共3小题,每小题5分,共15分.
12.展开式中的系数为,则的值为 .
【答案】1
【解析】因为的展开式的通项公式为,
可知展开式中含的项为,
则展开式中的系数为,解得.
13.函数的定义域为,对任意的,,恒有成立.请写出满足上述条件的函数的一个解析式 .
【答案】(答案不唯一)
【解析】依题意不妨令,
则,
又
,
所以,故符合题意.
同理可证明,,,也符合题意.
14.已知点P为直线上的动点,过P作圆的两条切线,切点分别为A,B,若点M为圆上的动点,则点M到直线AB的距离的最大值为 .
【答案】
【解析】设,则满足;
易知圆的圆心为,半径;
圆的圆心为,半径,如下图所示:
易知,所以,即,整理可得;
同理可得,
即是方程的两组解,
可得直线的方程为,联立,即;
令,可得,即时等式与无关,
所以直线恒过定点,可得;
又在圆内,当,且点为的延长线与圆的交点时,点到直线的距离最大;
最大值为;
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分13分)已知函数,.
(1)求的单调区间和极小值;
(2)证明:当时,.
【解】(1)函数,,求导得,
当时,单调递增;当时,单调递减;
当时,单调递增;当时,单调递减,
所以的递增区间为;递减区间为,的极小值为.
(2)证明:当时,令,
求导得,
令,求导得,
函数在上单调递增,则,在上单调递增,
因此,所以.
16.(本小题满分15分)如图,在四棱锥中,四边形是菱形,平面平面,点在上,且.
(1)求证:平面;
(2)若,求平面与平面夹角的余弦值.
【解】(1)不妨设,
,
由余弦定理得,
在中,,
平面平面,平面平面平面,
平面.
平面,
四边形是菱形,,
又,且平面平面平面.
(2)在平面内,过点作的垂线,垂足为,
平面平面,平面平面,
平面,
又四边形是菱形,,
均为等边三角形,
以点A为坐标原点,及过点A平行于的直线分别为轴,
建立空间直角坐标系(如图),
则,
由(1)平面,
为平面的一个法向量,
设平面的法向量为,
则即.
令,可得,,
平面与平面的夹角的余弦值为.
17.(本小题满分15分)已知椭圆C:的焦距为2,,分别为其左,右焦点,过的直线l与椭圆C交于M,N两点,的周长为8.
(1)求椭圆C的方程;
(2)已知结论:若点为椭圆C上一点,则椭圆C在该点的切线方程为.点T为直线上的动点,过点T作椭圆C的两条不同切线,切点分别为A,B,直线AB交x轴于点Q.证明:Q为定点.
【解】(1)
如图1,由已知可得,,
所以.
又,所以,.
所以,椭圆的标准方程为.
(2)设,,.
则由已知可得,方程为:,方程为:.
将代入、方程整理可得,
,.
显然、点坐标都满足方程.
即直线的方程为,
令,可得,即点坐标为.
所以,为定点.
18.(本小题满分17分)2023年11月,我国教育部发布了《中小学实验教学基本目录》,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到颗番石榴(不妨设颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前颗番石榴,自第颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设,记该学生摘到那颗最大番石榴的概率为.
(1)若,求;
(2)当趋向于无穷大时,从理论的角度,求的最大值及取最大值时的值.
(取)
【解】(1)依题意,4个番石榴的位置从第1个到第4个排序,有种情况,
要摘到那个最大的番石榴,有以下两种情况:
①最大的番石榴是第3个,其它的随意在哪个位置,有种情况;
②最大的番石榴是最后1个,第二大的番石榴是第1个或第2个,其它的随意在哪个位置,有种情况,
所以所求概率为.
(2)记事件表示最大的番石榴被摘到,事件表示最大的番石榴排在第个,则,
由全概率公式知:,
当时,最大的番石榴在前个中,不会被摘到,此时;
当时,最大的番石榴被摘到,当且仅当前个番石榴中的最大一个在前个之中时,此时,
因此,
令,求导得,由,得,
当时,,当时,,
即函数在上单调递增,在上单调递减,
则,于是当时,取得最大值,
所以的最大值为,此时的值为.
19.(本小题满分17分)将2024表示成5个正整数,,,,之和,得到方程①,称五元有序数组为方程①的解,对于上述的五元有序数组,当时,若,则称是密集的一组解.
(1)方程①是否存在一组解,使得等于同一常数?若存在,请求出该常数;若不存在,请说明理由;
(2)方程①的解中共有多少组是密集的?
(3)记,问是否存在最小值?若存在,请求出的最小值;若不存在,请说明理由.
【解】(1)若等于同一常数,
根据等差数列的定义可得构成等差数列,所以,
解得,与矛盾,
所以不存在一组解,使得等于同一常数;
(2)因为,
依题意时,即当时,,
所以,,
设有个,则有个,由,解得,
所以,,,,中有个,个,
所以方程①的解共有组.
(3)因为平均数,
又方差,即,
所以,因为为常数,所以当方差取最小值时取最小值,
又当时,即,方程无正整数解,故舍去;
当时,即是密集时,取得最小值,
且.
相关试卷
这是一份2024年高考押题预测卷—数学(广东专用02,新题型结构)(解析版),共13页。
这是一份2024年高考押题预测卷—数学(广东专用03,新题型结构)(解析版),共12页。
这是一份2024年高考押题预测卷—数学(广东专用01,新题型结构)(解析版),共16页。