综合解析-人教版数学八年级上册期末综合复习试题 A卷(解析卷)
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、等腰三角形有两条边长为5cm和9cm,则该三角形的周长是
A.19cmB.23cmC.19cm或23cmD.18cm
2、如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°; ②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论有( )个
A.2B.3C.4D.5
3、已知10a=20,100b=50,则a+2b+3的值是( )
A.2B.6C.3D.
4、下列倡导节约的图案中,是轴对称图形的是( )
A.B.C.D.
5、关于x的分式方程3=0有解,则实数m应满足的条件是( )
A.m=﹣2B.m≠﹣2C.m=2D.m≠2
二、多选题(5小题,每小题4分,共计20分)
1、如果方程有增根,则它的增根可能为( )
A.x=1B.x=-1C.x=0D.x=3
2、下列运算不正确的是( )
A.B.C.D.
3、已知关于x的分式方程无解,则m的值为( )
A.0B.C.D.
4、下列运算错误的是( )
A.B.
C.D.
5、若,则的值为( )
A.B.C.20D.10
第Ⅱ卷(非选择题 65分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、填空题(5小题,每小题5分,共计25分)
1、点P关于x轴对称点是,点P关于y轴对称点是,则__________.
2、分解因式:_____.
3、如图,中,点,分别在,上,与交于点,若,,,则的面积______.
4、等腰三角形的的两边分别为6和3,则它的第三边为______.
5、如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=______°.
四、解答题(5小题,每小题8分,共计40分)
1、某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?
2、已知,求的值.
3、如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.
4、计算:
(1).
(2).
5、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据周长的计算公式计算即可.(三角形的周长等于三边之和.)
【详解】
根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23.
【考点】
本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
论.
2、B
【解析】
【分析】
①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.
②正确.证明△ABP≌△FBP,推出PA=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.
③错误.利用反证法,假设成立,推出矛盾即可.
④错误,可以证明S四边形ABDE=2S△ABP.
⑤正确.由DH∥PE,利用等高模型解决问题即可.
【详解】
解:在△ABC中,AD、BE分别平分∠BAC、∠ABC
∵∠ACB=90°
∴∠A+∠B=90°
又∵AD、BE分别平分∠BAC、∠ABC
∴∠BAD+∠ABE=(∠A+∠B)=45°
∴∠APB=135°,故①正确
∴∠BPD=45°
又∵PF⊥AD
∴∠FPB=90°+45°=135°
∴∠APB=∠FPB
又∵∠ABP=∠FBP
BP=BP
∴△ABP≌△FBP(ASA)
∴∠BAP=∠BFP,AB=FB,PA=PF
在△APH和△FPD中
∴△APH≌△FPD(ASA)
∴PH=PD
∴AD=AP+PD=PF+PH.故②正确
∵△ABP≌△FBP,△APH≌△FPD
∴S△APB=S△FPB,S△APH=S△FPD,PH=PD
∵∠HPD=90°
∴∠HDP=∠DHP=45°=∠BPD
∴HD∥EP
∴S△EPH=S△EPD
∴S△APH=S△AED,故⑤正确
∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD
=S△ABP+(S△AEP+S△EPH)+S△PBD
=S△ABP+S△APH+S△PBD
=S△ABP+S△FPD+S△PBD
=S△ABP+S△FBP
=2S△ABP,故④不正确
若DH平分∠CDE,则∠CDH=∠EDH
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵DH∥BE
∴∠CDH=∠CBE=∠ABE
∴∠CDE=∠ABC
∴DE∥AB,这个显然与条件矛盾,故③错误
故选B.
【考点】
本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
3、B
【解析】
【分析】
把100变形为102,两个条件相乘得a+2b=3,整体代入求值即可.
【详解】
解:∵10a×100b=10a×102b=10a+2b=20×50=1000=103,
∴a+2b=3,
∴原式=3+3=6,
故选:B.
【考点】
本题考查了幂的乘方,同底数幂的乘法,解题的关键是:把100变形为102,两个条件相乘得a+2b=3,整体代入求值.
4、C
【解析】
【分析】
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.
【详解】
解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选C.
【考点】
此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
5、B
【解析】
【分析】
解分式方程得:即,由题意可知,即可得到.
【详解】
解:
方程两边同时乘以得:,
∴,
∵分式方程有解,
∴,
∴,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
故选B.
【考点】
本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.
二、多选题
1、AB
【解析】
【分析】
根据分式方程的增根的定义即可得解.
【详解】
解:由题意可得:方程的最简公分母为(x-1)(x+1),
若原分式方程要有增根,则(x-1)(x+1)=0,
则x=1或x=-1,
故选:AB.
【考点】
本题考查了分式方程的增根,分式方程的增根就是使方程的最简公分母等于0的未知数的值.
2、ABC
【解析】
【分析】
根据整式的混合运算法则分别计算即可.
【详解】
解:A、,错误,符合题意;
B、,错误,符合题意;
C、,错误,符合题意;
D、,正确,不符合题意;
故选:ABC.
【考点】
本题考查了同类项,完全平方公式,同底数幂除法,幂的乘方等知识点,熟练掌握运算法则是解本题的关键.
3、ABD
【解析】
【分析】
先将分式方程化为整式方程 ,再由原分式方程无解,可得 或 ,即可求解.
【详解】
解:
化为整式方程,得: ,
即 ,
∵关于x的分式方程无解,
∴ 或 ,
当时, ,
当,即或 时,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
或 ,
解得: 或 .
故选:ABD.
【考点】
本题主要考查了分式方程无解的问题,理解并掌握分式方程无解分为两种情况:分式方程产生增根;整式方程本身无解是解题的关键.
4、ABD
【解析】
【分析】
由积的乘方判断 由负整数指数幂的含义判断 由同底数幂的除法判断 由积的乘方与单项式除以单项式判断 从而可得答案.
【详解】
解:,故符合题意;
故符合题意;
故不符合题意;
故符合题意;
故选:
【考点】
本题考查的是积的乘方运算,负整数指数幂的含义,同底数幂的除法运算,单项式除以单项式的运算,掌握以上运算的运算法则是解题的关键.
5、AD
【解析】
【分析】
根据完全平方公式的变形先求得的值,进而求得的值,即可求解.
【详解】
,
,
,
,
.
故选AD.
【考点】
本题考查了完全平方公式的变形,求得的值是解题的关键.
三、填空题
1、1
【解析】
【分析】
根据关于坐标轴的对称点的坐标特征,求出a,b的值,即可求解.
【详解】
∵点P关于x轴对称点是,
∴P(a,-2),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵点P关于y轴对称点是,
∴b=-2,a=3,
∴1,
故答案是:1.
【考点】
本题主要考查关于坐标轴对称的点的坐标特征,熟练掌握“关于x轴对称的两点,横坐标相等,纵坐标互为相反数;关于y轴对称的两点,横坐标互为相反数,纵坐标相等”是解题的关键.
2、
【解析】
【分析】
原式利用十字相乘法分解即可.
【详解】
原式=(x-2)(x+5),
故答案为:(x-2)(x+5)
【考点】
此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.
3、7.5.
【解析】
【分析】
观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解.
【详解】
如下图所示,连接,
∵,,,
∴ ,
∴,
,
∴,
,
设,,
∴ ,
,
由,可得,
,
解得 ,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,,
.
故答案为:7.5.
【考点】
本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键.
4、6
【解析】
【分析】
题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:由题意得:
当腰为3时,则第三边也为腰,为3,此时3+3=6.故以3,3,6不能构成三角形;
当腰为6时,则第三边也为腰,为6,此时3+6>6,故以3,6,6可构成三角形.
故答案为:6.
【考点】
本题考查了等腰三角形的定义和三角形的三边关系,已知条件没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
5、30
【解析】
【分析】
本题实际上是全等三角形的性质以及根据三角形内角和等于180°来求角的度数.
【详解】
∵△ABC≌△A1B1C1,
∴∠C1=∠C,
又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,
∴∠C1=∠C=30°.
故答案为30.
【考点】
本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来.
四、解答题
1、商场实际购进彩灯的单价是60元
【解析】
【分析】
设商场原计划购进彩灯的单价为元,则商场实际购进彩灯的单价为元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.
【详解】
解:设商场原计划购进彩灯的单价为元,则商场实际购进彩灯的单价为元,
根据题意得:,
解得:,
经检验,是原分式方程的解,且符合题意,
则(元,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
答:商场实际购进彩灯的单价为60元.
【考点】
本题考查了分式方程的应用,找准等量关系,解题的关键是正确列出分式方程.
2、.
【解析】
【分析】
根据,可得,然后将化为,最后根据同底数幂的乘法法则求解.
【详解】
解:,
,
则,
,
原式.
【考点】
本题考查了幂的乘方与积的乘方和同底数幂乘法,解答本题的关键是掌握幂的乘方和积的乘方以及同底数幂的乘法法则.
3、见解析
【解析】
【分析】
由得出,由SAS证明,得出对应角相等即可.
【详解】
证明:∵,
∴.
在和中,
∴,
∴.
【考点】
本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.
4、(1)27;(2)
【解析】
【分析】
(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;
(2)按照幂的运算法则计算,再合并同类项.
【详解】
解:(1)
=
=
=27;
(2)
=
=
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
=
【考点】
本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键.
5、9
【解析】
【分析】
过点A作AF⊥BC交BC于F,则由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,则在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,从而求出BC.
【详解】
解:过点A作AF⊥BC交BC于F,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,BC=2BF,
在Rt△BAE中,AE=3cm,
∴AB=cm,
在Rt△AFB中,BF=AB•cs30°=,
∴BC=2BF=2×=9.
【考点】
本题考查了等腰三角形的性质和解直角三角形,通过作辅助线构造直角三角形是解题关键
综合解析-人教版数学八年级上册期末综合复习试题(解析卷): 这是一份综合解析-人教版数学八年级上册期末综合复习试题(解析卷),共21页。试卷主要包含了下列命题的逆命题一定成立的是等内容,欢迎下载使用。
综合解析人教版数学八年级上册期末综合复习试题 卷(Ⅰ)(解析卷): 这是一份综合解析人教版数学八年级上册期末综合复习试题 卷(Ⅰ)(解析卷),共21页。
综合解析人教版数学八年级上册期末综合复习试题 卷(Ⅰ)(解析版): 这是一份综合解析人教版数学八年级上册期末综合复习试题 卷(Ⅰ)(解析版),共21页。试卷主要包含了下列式子等内容,欢迎下载使用。