![模拟汇总湖南省常德市中考数学三年高频真题汇总卷(含答案及解析)第1页](http://m.enxinlong.com/img-preview/2/3/15588330/0-1712505039824/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模拟汇总湖南省常德市中考数学三年高频真题汇总卷(含答案及解析)第2页](http://m.enxinlong.com/img-preview/2/3/15588330/0-1712505039868/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模拟汇总湖南省常德市中考数学三年高频真题汇总卷(含答案及解析)第3页](http://m.enxinlong.com/img-preview/2/3/15588330/0-1712505039900/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
模拟汇总湖南省常德市中考数学三年高频真题汇总卷(含答案及解析)
展开
这是一份模拟汇总湖南省常德市中考数学三年高频真题汇总卷(含答案及解析),共24页。试卷主要包含了如图,E,不等式的最小整数解是,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
2、下列函数中,随的增大而减小的是( )
A.B.
C.D.
3、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A.B.C.D.
4、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
5、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③B.①②④C.①③④D.②③④
6、下列不等式中,是一元一次不等式的是( )
A.B.C.D.
7、不等式的最小整数解是( )
A.B.3C.4D.5
8、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
9、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.30km/hB.60km/hC.70km/hD.90km/h
10、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
A.15°B.10°C.20°D.25°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.
2、如图,均是由若干个的基础图形组成的有规律的图案,第①个图案由4个基础图形组成,第②个图案由7个基础图形组成,…,按此规律排列下去,第④个图案中的基础图形个数为______,用式子表示第n个图案中的基础图形个数为______.
3、为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:
则这组数据的众数是______;平均数是______.
4、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.
5、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
求证:
(1);
(2).
2、解方程:
(1);
(2)
3、(1)计算:;
(2)已知二次函数,当时,,当时,.求该二次函数的解析式.
4、已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0.
(1)请说明该方程实数根的个数情况;
(2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.
5、已知:在四边形中,于E,且.
(1)如图1,求的度数;
(2)如图2,平分交于F,点G在上,连接,且.求证:;
(3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
-参考答案-
一、单选题
1、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、C
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
3、A
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
4、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
5、B
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
6、B
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
A、不等式中含有两个未知数,不符合题意;
B、符合一元一次不等式的定义,故符合题意;
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
7、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
8、A
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
9、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
10、A
【分析】
利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
【详解】
∵DE∥AF,
∴∠CDE=∠CFA=45°,
∵∠CFA=∠B+∠BAF,∠B=30°,
∴∠BAF=15°,
故选A.
【点睛】
本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
二、填空题
1、
【解析】
【分析】
根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标
【详解】
解:如图,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当为直角顶点时,则,
作轴,
又
,
同理可得
根据三线合一可得是的中点,则
综上所述,点C的坐标为
故答案为:
【点睛】
本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.
2、 13
【解析】
【分析】
根据前三个图形中基础图形的个数得出第n个图案中基础图形的个数为3n+1即可.
【详解】
解:观察图形,可知
第①个图案由4个基础图形组成,即4=1×3+1,
第②个图案由7个基础图形组成,即7=2×3+1,
第③个图案由10个基础图形组成,即10=3×3+1,
…
第④个图案中的基础图形个数为13=3×4+1,
第n个图案的基础图形的个数为:3n+1.
故答案为:13,3n+1.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了图形的变化类、列代数式,解决本题的关键是观察图形的变化寻找规律.
3、 141 143
【解析】
【分析】
根据平均数,众数的性质分别计算出结果即可.
【详解】
解:根据题目给出的数据,可得:
平均数为:=143;
141出现了5次,出现次数最多,则众数是:141;
故答案为:141;143.
【点睛】
本题考查的是平均数,众数,熟悉相关的计算方法是解题的关键.
4、一
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“!”与“一”是相对面,
故答案是:一.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
5、
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
故答案为:.
【点睛】
此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
三、解答题
1、
(1)见解析
(2)见解析
【分析】
(1)利用已知条件证明即可;
(2)通过证明得出,再根据,得出结论.
(1)
证明:,,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
;
(2)
证明,点是边上的中点,
,,
,
,
,
,
,
,
,
,
,
,
即.
【点睛】
本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
2、
(1)x= ;
(2)x=
【分析】
(1)根据解一元一次方程的方法求解即可;
(2)根据解一元一次方程的方法求解即可.
(1)
解:去括号,得:6-9x=x+1,
移项、合并同类项,得:-10x=-5,
化系数为1,得:x= ;
(2)
解:去分母,得:2(2x+1)=6+(1-3x),
去括号,得:4x+2=6+1-3x,
移项、合并同类项,得:7x=5,
化系数为1,得:x= ;
【点睛】
本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
3、(1);(2)
【分析】
(2)分别把各特殊角的三角函数值代入进行计算即可;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)把x,y的值分别代入得关于a,b为未知数的方程组,求解方程组即可.
【详解】
解:(1)
;
(2)把,,,分别代入得
,
解得,
∴.
【点睛】
本题主要考查了特殊角三角函数的混合运算以及运用待定系数法示二次函数解析式,熟练掌握相关知识是解答本题的关键.
4、
(1)方程有两个不相等的实数根
(2)m=3或-3
【分析】
(1)根据根的判别式先求出Δ的值,再判断即可;
(2)根据根与系数的关系得出x1+x2=2m-2,x1•x2=m2-2m,代入计算即可求出答案.
(1)
解:∵a=1,b=−(2m−2),c= m2−2m,
∴ =2-4(m2-2m)=4m2-8m+4-4m2+8m=4>0,
∴方程有两个不相等的实数根;
(2)
解:∵(x1+1)⋅(x2+1)=8,
整理得x1x2+(x1+x2)+1=8,
∵x1+x2=2m-2,x1x2=m2-2m,
∴m2-2m+2m-2+1=8,
∴m2=9,
∴m=3或m=-3.
【点睛】
本题考查了根的判别式以及根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法.
5、
(1)120°;
(2)见解析;
(3)3.
【分析】
(1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
(2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
(1)
解:如图1,取AD的中点F,连接EF,
∵DE⊥AC,
∴∠AED=90°,
∴AD=2AF=2EF,
∵AD=2AE,
∴AE=EF=AF,
∴∠CAD=60°,
∵∠B+∠CAD=180°,
∴∠B=120°;
(2)
证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
∵BF平分∠ABC,
∴FM=FN,
在Rt△BFM和Rt△BFN中,
,
∴Rt△BFM≌Rt△BFN(HL),
∴BM=BN,
在Rt△FMG和Rt△FNA中,
,
∴Rt△FMG≌Rt△FNA(HL),
∴MG=NA,
∴BN+NA=BM+MG,
∴AB=BG.
(3)
如图3,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
∵AF=AD,∠DAE=60°,
∴△ADF是等边三角形,
∴∠AFD=60°,AF=DF,
∵GF=AF,∠DFC=180°-∠AFD=120°,
∴AF=GF=DF,
∴∠FGD=∠FDG,∠FAG=∠FGA,
∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
∵∠ADC=120°,AD=DG,
∴∠DGA=∠DAG==30°,
∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
∴∠DGC=∠DFC,
∵∠1=∠2,
∴180°-∠DGC-∠1=180°-∠DFC-∠2,
∴∠GCF=∠FDG,∠DCF=∠FGD,
∴∠GCF=∠DCF,
∵FH⊥CD,
∴FM=FH,
∵∠FMG=∠FHD=90°,
∴Rt△FMG≌Rt△FHD(HL),
∴DH=MG,
同理可得:△MCF≌△HCF(HL),
∴CM=CH=2CG,
∴GM=CG=DH,
∴3CG=CD=,
∴GM=CG=,
∴BM=BG-GM=AB-GM=5-=,
在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
∴BF=2BM=3.
【点睛】
本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
x
-1
0
1
2
3
-8
-4
0
4
8
一分钟跳绳个数(个)
141
144
145
146
学生人数(名)
5
2
1
2
相关试卷
这是一份模拟汇总湖南省长沙市中考数学三年高频真题汇总 卷(Ⅰ)(含答案解析),共25页。试卷主要包含了已知,则的补角等于,单项式的次数是等内容,欢迎下载使用。
这是一份模拟汇总湖南省中考数学三年高频真题汇总卷(含详解),共22页。试卷主要包含了如图,,下列现象等内容,欢迎下载使用。
这是一份中考数学湖南省常德市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解),共28页。