





所属成套资源:最新中考数学二轮复习讲义+专题(全国通用)
- 题型09 二次函数综合题 类型05 二次函数与三角形全等、相似(位似)有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用) 试卷 0 次下载
- 题型09 二次函数综合题 类型06 二次函数与等腰三角形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用) 试卷 0 次下载
- 题型09 二次函数综合题 类型08 二次函数与平行四边形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用) 试卷 0 次下载
- 题型09 二次函数综合题 类型09 二次函数与菱形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用) 试卷 0 次下载
- 题型09 二次函数综合题 类型10 二次函数与矩形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用) 试卷 0 次下载
题型09 二次函数综合题 类型07 二次函数与直角三角形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用)
展开
这是一份题型09 二次函数综合题 类型07 二次函数与直角三角形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型九二次函数综合题类型七二次函数与直角三角形有关的问题专题训练原卷版docx、题型九二次函数综合题类型七二次函数与直角三角形有关的问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。
2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
题型九 二次函数综合题
类型七 二次函数与直角三角形有关的问题(专题训练)
1.(2022·山东滨州)如图,在平面直角坐标系中,抛物线与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接.
(1)求线段AC的长;
(2)若点Р为该抛物线对称轴上的一个动点,当时,求点P的坐标;
(3)若点M为该抛物线上的一个动点,当为直角三角形时,求点M的坐标.
2.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
(1)求抛物线的表达式;
(2)判断△BCE的形状,并说明理由;
(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.
3.(2021·湖北中考真题)在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点,顶点的坐标为.
(1)直接写出抛物线的解析式;
(2)如图1,若点在抛物线上且满足,求点的坐标;
(3)如图2,是直线上一个动点,过点作轴交抛物线于点,是直线上一个动点,当为等腰直角三角形时,直接写出此时点及其对应点的坐标
4.(2021·湖北中考真题)抛物线()与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点.
(1)求抛物线的解析式;
(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;
(3)若是对称轴上一定点,是抛物线上的动点,求的最小值(用含的代数式表示).
5.(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.
①求直线BD的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
6.(2020·甘肃兰州?中考真题)如图,抛物线经过A(-3,6),B(5,-4)两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求证:AB平分;
(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形.若存在,求出点M的坐标;若不存在,说明理由.
7.(2020·内蒙古通辽?中考真题)如图,在平面直角坐标系中,抛物线与x轴交于点,与y轴交于点C,且直线过点B,与y轴交于点D,点C与点D关于x轴对称.点P是线段上一动点,过点P作x轴的垂线交抛物线于点M,交直线于点N.
(1)求抛物线的函数解析式;
(2)当的面积最大时,求点P的坐标;
(3)在(2)的条件下,在y轴上是否存在点Q,使得以三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.
相关试卷
这是一份题型09 二次函数综合题 类型12 二次函数与圆的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型九二次函数综合题类型十二二次函数与圆的问题专题训练原卷版docx、题型九二次函数综合题类型十二二次函数与圆的问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。
这是一份题型09 二次函数综合题 类型11 二次函数与正方形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练原卷版docx、题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份题型09 二次函数综合题 类型10 二次函数与矩形有关的问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型九二次函数综合题类型十二次函数与矩形有关的问题专题训练原卷版docx、题型九二次函数综合题类型十二次函数与矩形有关的问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
