所属成套资源:最新中考数学二轮复习讲义+专题(全国通用)
题型08 函数的实际应用 类型三 利润最值问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用)
展开
这是一份题型08 函数的实际应用 类型三 利润最值问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型八函数的实际应用类型三利润最值问题专题训练原卷版docx、题型八函数的实际应用类型三利润最值问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。
2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
题型八 函数的实际应用
类型三 利润最值问题(专题训练)
1.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.
(1)求y关于x的一次函数解析式;
(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.
【答案】(1)
(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元
【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;
(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.
(1)解:设,把,和,代入可得
,解得,
则;
(2)解:每月获得利润
.
∵,
∴当时,P有最大值,最大值为3630.
答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.
【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.
2.某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.
(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元
【分析】
(1)根据题意,通过列一元二次方程并求解,即可得到答案;
(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案.
【详解】
(1)由题意列方程得:(x+40-30) (300-10x)=3360
解得:x1=2,x2=18
∵要尽可能减少库存,
∴x2=18不合题意,故舍去
∴T恤的销售单价应提高2元;
(2)设利润为M元,由题意可得:
M=(x+40-30)(300-10x)=-10x2+200x+3000=
∴当x=10时,M最大值=4000元
∴销售单价:40+10=50元
∴当服装店将销售单价50元时,得到最大利润是4000元.
【点睛】
本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.
3.某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24-x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
【答案】(1)
(2)①第一年的售价为每件16元,②第二年的最低利润为万元.
【分析】(1)由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,从而可得答案;
(2)①把代入(1)的函数解析式,再解方程即可,②由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,列函数关系式,再利用二次函数的性质求解利润范围即可得到答案.
(1)解:由题意得:
(2)①由(1)得:当时,
则即
解得:
即第一年的售价为每件16元,
② 第二年售价不高于第一年,销售量不超过13万件,
解得:
其他成本下降2元/件,
∴
对称轴为
当时,利润最高,为77万元,而
当时,(万元)
当时, (万元)
所以第二年的最低利润为万元.
【点睛】本题考查的是二次函数的实际应用,二次函数的性质,理解题意,列出函数关系式,再利用二次函数的性质解题是关键.
4.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该水果每次降价的百分率;
(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:
已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?
【答案】(1)10%;(2)y=﹣3x2+60x+80,第9天时销售利润最大,最大利润是377元
【解析】
【分析】
(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;
(2)根据题意和表格中的数据,可以求得y与x(1≤x<10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.
【详解】
解:(1)设该水果每次降价的百分率为x,
10(1﹣x)2=8.1,
解得,x1=0.1,x2=1.9(舍去),
答:该水果每次降价的百分率是10%;
(2)由题意可得,
y=(8.1﹣4.1)×(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,
∵1≤x<10,
∴当x=9时,y取得最大值,此时y=377,
由上可得,y与x(1≤x<10)之间的函数解析式是y=﹣3x2+60x+80,第9天时销售利润最大,最大利润是377元.
【点睛】
本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.
5.国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:
已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.
(1)求的值;
(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?
【答案】(1)16;(2)购进甲种水果75千克,则乙种水果25千克,获得最大利润425元
【分析】
(1)根据用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同列出分式方程,解之即可;
(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,列出y关于m的表达式,根据甲种水果的重量不低于乙种水果重量的3倍,求出m的范围,再利用一次函数的性质求出最大值.
【详解】
解:(1)由题意可知:
,
解得:x=16,
经检验:x=16是原方程的解;
(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,
由题意可知:
y=(20-16)m+(25-16-4)(100-m)=-m+500,
∵甲种水果的重量不低于乙种水果重量的3倍,
∴m≥3(100-m),
解得:m≥75,即75≤m<100,
在y=-m+500中,-1<0,则y随m的增大而减小,
∴当m=75时,y最大,且为-75+500=425元,
∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.
【点睛】
本题考查了分式方程和一次函数的实际应用,解题的关键是读懂题意,列出方程和函数表达式.
6.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
(1)问甲、乙两种食材每千克进价分别是多少元?
(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
①问每日购进甲、乙两种食材各多少千克?
②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?
【答案】(1)甲、乙两种食材每千克进价分别为40元、20元;(2)①每日购进甲食材400千克,乙食材100千克;②当为400包时,总利润最大.最大总利润为2800元
【分析】
(1)设乙食材每千克进价为元,根据用80元购买的甲食材比用20元购买的乙食材多1千克列分式方程即可求解;
(2)①设每日购进甲食材千克,乙食材千克.根据每日用18000元购进甲、乙两种食材并恰好全部用完,利用进货总金额为180000元,含铁量一定列出二元一次方程组即可求解;
②设为包,根据题意,可以得到每日所获总利润与m的函数关系式,再根据A的数量不低于B的数量,可以得到m的取值范围,从而可以求得总利润的最大值.
【详解】
解:(1)设乙食材每千克进价为元,则甲食材每千克进价为元,
由题意得,解得.
经检验,是所列方程的根,且符合题意.
(元).
答:甲、乙两种食材每千克进价分别为40元、20元.
(2)①设每日购进甲食材千克,乙食材千克.
由题意得,解得
答:每日购进甲食材400千克,乙食材100千克.
②设为包,则为包.
记总利润为元,则
.
的数量不低于的数量,
,.
,随的增大而减小。
当时,的最大值为2800元.
答:当为400包时,总利润最大.最大总利润为2800元.
【点睛】
本题主要考查了一次函数的应用、分式方程、二元一次方程的应用,解答本题时要明确题意、弄清表格数据的意义及各种量之间关系,利用方程的求未知量和一次函数的性质解答,注意分式方程要检验.
7.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
【分析】
(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;
(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;
(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解.
【解析】
(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;
(2)设每千克水果售价为x元,
由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],
解得:x1=65,x2=75,
答:每千克水果售价为65元或75元;
(3)设每千克水果售价为m元,获得的月利润为y元,
由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,
∴当m=70时,y有最大值为9000元,
答:当每千克水果售价为70元时,获得的月利润最大值为9000元.
8.某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.
(1)求k,b的值;
(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.
【分析】
(1)利用待定系数法可求解析式;
(2)由销售该商品每周的利润w=销售单价×销售量,可求函数解析式,由二次函数的性质可求解.
【解析】
(1)由题意可得:30=50k+b10=70k+b,
∴k=−1b=80,
答:k=﹣1,b=80;
(2)∵w=(x﹣40)y=(x﹣40)(﹣x+80)=﹣(x﹣60)2+400,
∴当x=60时,w有最大值为400元,
答:销售该商品每周可获得的最大利润为400元.
9.在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
【答案】(1)每盒产品的成本为30元.(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元.
【分析】
(1)设原料单价为元,则原料单价为元.然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;
(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;
(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可.
【详解】
解:(1)设原料单价为元,则原料单价为元.
依题意,得.
解得,,.
经检验,是原方程的根.
∴每盒产品的成本为:(元).
答:每盒产品的成本为30元.
(2)
;
(3)∵抛物线的对称轴为=70,开口向下
∴当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;
当时,每天的最大利润为元.
【点睛】
本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.
10.某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.
(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).
(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)
【分析】
(1)分别得出当0<x≤12时和当12<x≤20时,z关于x的函数解析式即可得出答案;
(2)设第x个生产周期工厂创造的利润为w万元,①当0<x≤12时,可得出w关于x的一次函数,根据一次函数的性质可得相应的最大值;②当12<x≤20时,可得出w关于x的二次函数,根据二次函数的性质可得相应的最大值.取①②中较大的最大值即可.
【解析】
(1)由图可知,当0<x≤12时,z=16,
当12<x≤20时,z是关于x的一次函数,设z=kx+b,
则12k+b=16,20k+b=14,
解得:k=−14,b=19,
∴z=−14x+19,
∴z关于x的函数解析式为z=16,(0<x≤12)z=−14x+19,(12<x≤20).
(2)设第x个生产周期工厂创造的利润为w万元,
①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,
∴由一次函数的性质可知,当x=12时,w最大值=30×12+240=600(万元);
②当12<x≤20时,
w=(−14x+19﹣10)(5x+40)
=−54x2+35x+360
=−54(x﹣14)2+605,
∴当x=14时,w最大值=605(万元).
综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.
11.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
说明:①汽车数量为整数;
②月利润=月租车费-月维护费;
③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
【答案】(1)48000,37;(2)33150元;(3)
【分析】
(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,根据月利润相等得到方程,解之即可得到结果;
(2)设两公司的月利润分别为y甲,y乙,月利润差为y,同(1)可得y甲和y乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y关于x的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;
(3)根据题意得到利润差为,得到对称轴,再根据两公司租出的汽车均为17辆,结合x为整数可得关于a的不等式,即可求出a的范围.
【详解】
解:(1)=48000元,
当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;
设每个公司租出的汽车为x辆,
由题意可得:,
解得:x=37或x=-1(舍),
∴当每个公司租出的汽车为37辆时,两公司的月利润相等;
(2)设两公司的月利润分别为y甲,y乙,月利润差为y,
则y甲=,
y乙=,
当甲公司的利润大于乙公司时,0<x<37,
y=y甲-y乙=
=,
当x==18时,利润差最大,且为18050元;
当乙公司的利润大于甲公司时,37<x≤50,
y=y乙-y甲=
=,
∵对称轴为直线x==18,
当x=50时,利润差最大,且为33150元;
综上:两公司月利润差的最大值为33150元;
(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,
则利润差为=,
对称轴为直线x=,
∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,
∴,
解得:.
【点睛】
本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x为整数得到a的不等式.
12.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.
(1)甲、乙两种商品的进货单价分别是多少?
(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:
请写出当11≤x≤19时,y与x之间的函数关系式.
(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?
【分析】
(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.
(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.
(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.
【解析】
(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:
3a+2b=602a+3b=65,
解得:a=10b=15.
∴甲、乙两种商品的进货单价分别是10、15元/件.
(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:
11k1+b1=1819k1+b1=2,解得:k1=−2b1=40.
∴y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).
(3)由题意得:
w=(﹣2x+40)(x﹣10)
=﹣2x2+60x﹣400
=﹣2(x﹣15)2+50(11≤x≤19).
∴当x=15时,w取得最大值50.
∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.
13.超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价.
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)
【答案】
苹果的进价为10元/千克;
;
(3)要使超市销售苹果利润w最大,一天购进苹果数量为200千克.
【分析】
(1)设苹果的进价为x元/千克,根据等量关系,列出分式方程,即可求解;
(2)分两种情况:当x≤100时, 当x>100时,分别列出函数解析式,即可;
(3)分两种情况:若x≤100时,若x>100时,分别求出w关于x的函数解析式,根据二次函数的性质,即可求解.
【详解】
解:(1)设苹果的进价为x元/千克,
由题意得:,解得:x=10,
经检验:x=10是方程的解,且符合题意,
答:苹果的进价为10元/千克;
(2)当x≤100时,y=10x,
当x>100时,y=10×100+(10-2)×(x-100)=8x+200,
∴;
(3)若x≤100时,w=zx-y==,
∴当x=100时,w最大=100,
若x>100时,w==zx-y==,
∴当x=200时,w最大=600,
综上所述:当x=200时,超市销售苹果利润w最大,
答:要使超市销售苹果利润w最大,一天购进苹果数量为200千克.
【点睛】
本题主要考查分式方程、一次函数、二次函数的实际应用,根据数量关系,列出函数解析式和分式方程,是解题的关键.
14.某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月按30天计算,这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天且x为整数的销售量为y件.
直接写出y与x的函数关系式;
设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?
【答案】;第20天的利润最大,最大利润是3200元.
【解析】
【分析】
(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;
(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.
【详解】
由题意可知;
根据题意可得:,
,
,
,
函数有最大值,
当时,w有最大值为3200元,
第20天的利润最大,最大利润是3200元.
【点睛】
本题考查了二次函数的应用,弄清题意,找到关键描述语,找准等量关系准确的列出函数关系式是解决问题的关键.
15.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:
(1)求y关于x的函数解析式;
(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;
(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?
【答案】(1)y=-10x+300;(2)w=-10x2+410x-3300;(3)售价为20元或21元,利润最大,为900元.
【解析】
【分析】
(1)根据表格中数据利用待定系数法求解;
(2)利用利润=销售量×(售价-成本)即可表示出w;
(3)根据(2)中解析式求出当x为何值,二次函数取最大值即可.
【详解】
解:(1)设y=kx+b,
由表可知:当x=15时,y=150,当x=16时,y=140,
则,解得:,
∴y关于x的函数解析式为:y=-10x+300;
(2)由题意可得:
w=(-10x+300)(x-11)=-10x2+410x-3300,
∴w关于x的函数解析式为:w=-10x2+410x-3300;
(3)∵=20.5,
当x=20或21时,代入,
可得:w=900,
∴该工艺品每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元.
【点睛】
本题考查了求一次函数表达式,二次函数的实际应用,解题的关键是弄清题中所含的数量关系,正确列出相应表达式.
16.某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
(1)直接写出y与x的关系式_________________;
(2)求公司销售该商品获得的最大日利润;
(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.
【答案】(1);(2)当销售单价是75元时,最大日利润是2025元;(3)70
【解析】
【分析】
(1)根据题中所给的表格中的数据,可以直接写出其关系式;
(2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值;
(3)根据题意,列出关系式,再分类讨论求最值,比较得到结果.
【详解】
(1)设解析式为,
将和代入,可得,解得,
所以y与x的关系式为,
所以答案为;
(2)
,
∴抛物线开口向下,函数有最大值
∴当时,
答:当销售单价是75元时,最大日利润是2025元.
(3)
当时,
解得
,∴有两种情况
①时,在对称轴左侧,w随x的增大而增大,
∴当时,
②时,在范围内,
∴这种情况不成立,.
【点睛】
该题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数应用题,在解题的过程中,注意正确找出等量关系是解题的关键,属于简单题目.
17.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量(本)与销售单价(元)之间满足一次函数关系,三对对应值如下表:
(1)求与之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为元(,且为整数),设每周销售该款笔记本所获利润为元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?
【答案】(1);(2)销售单价为15元时,每周所获利润最大,最大利润是1750元.
【解析】
【分析】
(1)根据待定系数法解答即可;
(2)根据每周销售利润=每本笔记本的利润×每周销售数量可得w与x的二次函数关系式,再根据二次函数的性质即可求出结果.
【详解】
解:(1)设与之间的函数关系式是,
把,和,代入,得
,解得:,
;
(2)根据题意,得
;
,
有最大值,且当时,随的增大而增大,
为整数,
时,有最大值,且w最大(元).
答:销售单价为15元时,每周所获利润最大,最大利润是1750元.
【点睛】
本题考查了二次函数的应用,属于常考题型,正确理解题意、熟练掌握二次函数的性质是解题的关键.
18.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量(件)与每件的售价(元)满足一次函数关系,部分数据如下表:
(1)求出与之间的函数表达式;(不需要求自变量的取值范围)
(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?
(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?
【答案】(1)与之间的函数表达式为;(2)这种衬衫定价为每件70元;(3)价定为65元可获得最大利润,最大利润是19500元.
【解析】
【分析】
(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;
(2)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;
(3)求出w的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少.
【详解】
解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),
把x=60,y=1400和x=65,y=1300代入解析式得,
,
解得,,
∴与之间的函数表达式为;
(2)设该种衬衫售价为x元,根据题意得,
(x-50)(-20x+2600)=24000
解得,,,
∵批发商场想尽量给客户实惠,
∴,
故这种衬衫定价为每件70元;
(3)设售价定为x元,则有:
=
∵
∴
∵k=-20<0,
∴w有最大值,即当x=65时,w的最大值为-20(65-90)2+32000=19500(元).
所以,售价定为65元可获得最大利润,最大利润是19500元.
【点睛】
本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.
19.某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件元,月销量为件,月销售利润为元.
(1)写出与的函数解析式和与的函数解析式;
(2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元;
(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.
【答案】(1)y=1000-10x;W=-10x2+1400x-40000;(2)销售价应定为每件80元;(3)销售价定为每件70元时会获得最大利润9000元.
【解析】
【分析】
(1)根据题意一个月能售出500件,若销售单价每涨1元,每周销量就减少10件,可得y=500-10(x-50),再利用一个月的销售量×每件销售利润=一个月的销售利润列出一个月的销售利润为W,写出W与x的函数关系式;
(2)令W=8000,求出x的取值即可;
(3)根据二次函数最值的求法求解即可.
【详解】
解:(1)由题意得:
y=500-10(x-50)=1000-10x,
W=(x-40)(1000-10x)=-10x2+1400x-40000;
(2)由题意得:-10x2+1400x-40000=8000,
解得:x1=60,x2=80,
当x=60时,成本=40×[500-10(60-50)]=16000>10000不符合要求,舍去,
当x=80时,成本=40×[500-10(80-50)]=8000<10000符合要求,
∴销售价应定为每件80元;
(3)W=-10x2+1400x-40000,
当x=70时,W取最大值9000,
故销售价定为每件70元时会获得最大利润9000元.
【点睛】
此题主要考查了二次函数的应用,准确分析题意,列出二次函数关系式是解题关键.
20.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
【答案】(1)450千克;(2)当月销售利润为元时,每千克水果售价为元或元;(3)当该优质水果每千克售价为元时,获得的月利润最大
【解析】
【分析】
(1)根据销售量的规律:500减去减少的数量即可求出答案;
(2)设每千克水果售价为元,根据题意列方程解答即可;
(3)设月销售利润为元,每千克水果售价为元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.
【详解】
解:当售价为元/千克时,每月销售量为千克.
设每千克水果售价为元,由题意,得
即
整理,得
配方,得
解得
当月销售利润为元时,每千克水果售价为元或元
设月销售利润为元,每千克水果售价为元,
由题意,得
即
配方,得
,
当时,有最大值
当该优质水果每千克售价为元时,获得的月利润最大.
【点睛】
此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算.
时间(天)
x
销量(斤)
120﹣x
储藏和损耗费用(元)
3x2﹣64x+400
水果单价
甲
乙
进价(元/千克)
售价(元/千克)
20
25
营养品信息表
营养成份
每千克含铁42毫克
配料表
原料
每千克含铁
甲食材
50毫克
乙食材
10毫克
规格
每包食材含量
每包单价
A包装
1千克
45元
B包装
0.25千克
12元
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
销售单价x(元/件)
11
19
日销售量y(件)
18
2
每件售价x(元)
…
15
16
17
18
…
每天销售量y(件)
…
150
140
130
120
…
销售单价x(元)
40
60
80
日销售量y(件)
80
60
40
销售单价(元)
12
14
16
每周的销售量(本)
500
400
300
售价(元/件)
60
65
70
销售量(件)
1400
1300
1200
相关试卷
这是一份题型08 函数的实际应用 类型四 抛物线型问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型八函数的实际应用类型四抛物线型问题专题训练原卷版docx、题型八函数的实际应用类型四抛物线型问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份题型08 函数的实际应用 类型二 阶梯费用及行程类问题(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型八函数的实际应用类型二阶梯费用及行程类问题专题训练原卷版docx、题型八函数的实际应用类型二阶梯费用及行程类问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份题型06 几何最值(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型六几何最值专题训练原卷版docx、题型六几何最值专题训练解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。