搜索
    上传资料 赚现金
    英语朗读宝

    模拟真题湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解)

    模拟真题湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解)第1页
    模拟真题湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解)第2页
    模拟真题湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟真题湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解)

    展开

    这是一份模拟真题湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解),共23页。试卷主要包含了下列图标中,轴对称图形的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
    A.3B.C.4D.
    2、单项式的次数是( )
    A.1B.2C.3D.4
    3、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
    A.B.C.D.不确定
    4、下面四个立体图形的展开图中,是圆锥展开图的是( ).
    A.B.C.D.
    5、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    6、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
    A.B.C.D.
    7、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
    A.B.C.D.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    8、下列图标中,轴对称图形的是( )
    A.B.C.D.
    9、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A.B.
    C.D.
    10、已知单项式5xayb+2的次数是3次,则a+b的值是( )
    A.1B.3C.4D.0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    2、如图,平分,,,则__.
    3、某校六年级两个班共有78人,若从一班调3人到二班,那么两班人数正好相等.一班原有人数是__人.
    4、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C=90°,AC=BC=10,AB=10,点C关于折痕AD的对应点E恰好落在AB边上,小明在折痕AD上任取一点P,则△PEB周长的最小值是___________.
    5、如图,均是由若干个的基础图形组成的有规律的图案,第①个图案由4个基础图形组成,第②个图案由7个基础图形组成,…,按此规律排列下去,第④个图案中的基础图形个数为______,用式子表示第n个图案中的基础图形个数为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、补全解题过程.
    已知:如图,∠AOB=40°,∠BOC=70°,OD平分∠AOC.
    求∠BOD的度数.
    解:∵∠AOB=40°,∠BOC=70°,
    ∴∠AOC=∠AOB+∠BOC= °.
    ∵OD平分∠AOC,
    ∴∠AOD=∠ ( )(填写推理依据).
    ∴∠AOD= °.
    ∴∠BOD=∠AOD﹣∠ .
    ∴∠BOD= °.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、已知:在四边形中,于E,且.
    (1)如图1,求的度数;
    (2)如图2,平分交于F,点G在上,连接,且.求证:;
    (3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
    3、已知:如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AF=DC,BC∥FE,∠A=∠D.求证:AB=DE.
    4、解方程:
    (1);
    (2).
    5、如图,已知中,,射线CD交AB于点D,点E是CD上一点,且,联结BE.
    (1)求证:
    (2)如果CD平分,求证:.
    -参考答案-
    一、单选题
    1、D
    【分析】
    勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
    【详解】
    解:∵,,,
    ∴,
    ∵,D是BC的中点,垂足为D,
    ∴BE=CE,
    故选:D.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
    2、C
    【分析】
    单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
    【详解】
    解:单项式的次数是3,
    故选C
    【点睛】
    本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
    3、C
    【分析】
    根据公式,得=,=,判断选择即可.
    【详解】
    ∵=,=,
    ∴=.
    故选C.
    【点睛】
    本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
    4、B
    【分析】
    由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
    【详解】
    解:选项A是四棱柱的展开图,故A不符合题意;
    选项B是圆锥的展开图,故B符合题意;
    选项C是三棱柱的展开图,故C不符合题意;
    选项D是圆柱的展开图,故D不符合题意;
    故选B
    【点睛】
    本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
    5、C
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
    【详解】
    解:
    A、不是中心对称图形,是轴对称图形,故此选项错误;
    B、是中心对称图形,不是轴对称图形,故此选项错误;
    C、是中心对称图形,也是轴对称图形,故此选项正确;
    D、不是中心对称图形,是轴对称图形,故此选项错误;
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    6、D
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
    【详解】
    解:在Rt△ABC中,AB=,
    ∴点B所走过的路径长为=
    故选D.
    【点睛】
    本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
    7、C
    【分析】
    先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
    【详解】
    解:由数轴得:.
    A、,此项错误;
    B、由得:,所以,此项错误;
    C、,此项正确;
    D、,此项错误;
    故选:C.
    【点睛】
    本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
    8、A
    【详解】
    解:A、是轴对称图形,故本选项符合题意;
    B、不是轴对称图形,故本选项不符合题意;
    C、不是轴对称图形,故本选项不符合题意;
    D、不是轴对称图形,故本选项不符合题意;
    故选:A
    【点睛】
    本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
    9、B
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    第3年的销售量为,
    故选:B.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    10、A
    【分析】
    根据单项式的次数的概念求解.
    【详解】
    解:由题意得:a+b+2=3,
    ∴a+b=1.
    故选:A.
    【点睛】
    本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
    二、填空题
    1、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.
    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    2、##BC//DE
    【解析】
    【分析】
    由平分,可得,再根据同旁内角互补两直线平行可得结论.
    【详解】
    解:平分,,
    ∴=2=110°,

    ∴∠C+∠CDE=70°+110°=180°,

    故答案为:.
    【点睛】
    本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
    3、42
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【解析】
    【分析】
    设一班原有人数是人,则二班原有人数是人,根据从一班调3人到二班,那么两班人数正好相等,列方程求解.
    【详解】
    解答:解:设一班原有人数是人,则二班原有人数是人,依题意有:

    解得.
    故一班原有人数是42人.
    故答案为:42.
    【点睛】
    本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.
    4、
    【解析】
    【分析】
    连接CE,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
    【详解】
    解:连接CE,
    ∵沿AD折叠C和E重合,
    ∴∠ACD=∠AED=90°,AC=AE=10,∠CAD=∠EAD,
    ∴BE=10-10,AD垂直平分CE,即C和E关于AD对称,CD=DE,
    ∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
    ∴△PEB的周长的最小值是BC+BE=10+10-10=10.
    故答案为:10.
    【点睛】
    本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,关键是求出P点的位置.
    5、 13
    【解析】
    【分析】
    根据前三个图形中基础图形的个数得出第n个图案中基础图形的个数为3n+1即可.
    【详解】
    解:观察图形,可知
    第①个图案由4个基础图形组成,即4=1×3+1,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    第②个图案由7个基础图形组成,即7=2×3+1,
    第③个图案由10个基础图形组成,即10=3×3+1,

    第④个图案中的基础图形个数为13=3×4+1,
    第n个图案的基础图形的个数为:3n+1.
    故答案为:13,3n+1.
    【点睛】
    本题考查了图形的变化类、列代数式,解决本题的关键是观察图形的变化寻找规律.
    三、解答题
    1、110,AOC,角平分线的定义,55,AOB,15
    【分析】
    利用角的和差关系先求解 再利用角平分线的定义求解 最后利用角的和差可得答案.
    【详解】
    解:∵∠AOB=40°,∠BOC=70°,
    ∴∠AOC=∠AOB+∠BOC=110°.
    ∵OD平分∠AOC,
    ∴∠AOD=∠AOC( 角平分线的定义).
    ∴∠AOD=55°.
    ∴∠BOD=∠AOD﹣∠AOB.
    ∴∠BOD=15°.
    故答案为:110,AOC,角平分线的定义,55,AOB,15
    【点睛】
    本题考查的是角平分线的定义,角的和差运算,理解题中的逻辑关系,熟练的运用角平分线与角的和差进行推理是解本题的关键.
    2、
    (1)120°;
    (2)见解析;
    (3)3.
    【分析】
    (1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
    (2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
    (3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
    (1)
    解:如图1,取AD的中点F,连接EF,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴AD=2AF=2EF,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵AD=2AE,
    ∴AE=EF=AF,
    ∴∠CAD=60°,
    ∵∠B+∠CAD=180°,
    ∴∠B=120°;
    (2)
    证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
    ∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
    ∵BF平分∠ABC,
    ∴FM=FN,
    在Rt△BFM和Rt△BFN中,

    ∴Rt△BFM≌Rt△BFN(HL),
    ∴BM=BN,
    在Rt△FMG和Rt△FNA中,

    ∴Rt△FMG≌Rt△FNA(HL),
    ∴MG=NA,
    ∴BN+NA=BM+MG,
    ∴AB=BG.
    (3)
    如图3,
    连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
    ∵AF=AD,∠DAE=60°,
    ∴△ADF是等边三角形,
    ∴∠AFD=60°,AF=DF,
    ∵GF=AF,∠DFC=180°-∠AFD=120°,
    ∴AF=GF=DF,
    ∴∠FGD=∠FDG,∠FAG=∠FGA,
    ∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
    ∵∠ADC=120°,AD=DG,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠DGA=∠DAG==30°,
    ∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
    ∴∠DGC=∠DFC,
    ∵∠1=∠2,
    ∴180°-∠DGC-∠1=180°-∠DFC-∠2,
    ∴∠GCF=∠FDG,∠DCF=∠FGD,
    ∴∠GCF=∠DCF,
    ∵FH⊥CD,
    ∴FM=FH,
    ∵∠FMG=∠FHD=90°,
    ∴Rt△FMG≌Rt△FHD(HL),
    ∴DH=MG,
    同理可得:△MCF≌△HCF(HL),
    ∴CM=CH=2CG,
    ∴GM=CG=DH,
    ∴3CG=CD=,
    ∴GM=CG=,
    ∴BM=BG-GM=AB-GM=5-=,
    在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
    ∴BF=2BM=3.
    【点睛】
    本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
    3、见解析
    【分析】
    证明△ABC≌△DEF即可.
    【详解】
    ∵BC∥FE,
    ∴∠1 =∠2
    ∵AF=DC,
    ∴AF+FC=DC+CF.
    ∴AC=DF.
    在△ABC和△DEF中,

    ∴△ABC≌△DEF(ASA) .
    ∴AB=DE.
    【点睛】
    本题考查了平行线的性质、三角形全等的判定与性质,关键是证明三角形全等.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、
    (1)x=2;
    (2)x=-1
    【分析】
    (1)根据一元一次方程的解法解答即可;
    (2)根据一元一次方程的解法解答即可.
    (1)
    解:去括号,得:8-4x+12=6x,
    移项、合并同类项,得:-10x=-20,
    化系数为1,得:x=2;
    (2)
    解:去分母,得:3(2x+3)-(x-2)=6,
    去括号,得:6x+9-x+2=6,
    移项、合并同类项,得:5x=-5,
    化系数为1,得:x=-1;
    【点睛】
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    5、
    (1)见解析;
    (2)见解析
    【分析】
    (1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得即,再根据相似三角形的判定即可证得结论;
    (2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.
    (1)
    证明:∵,∠ADE=∠CDB,
    ∴△ADE∽△CDB,
    ∴即,又∠ADC=∠EDB,
    ∴;
    (2)
    证明:∵CD平分,∠ACB=90°,
    ∴∠ACD=∠DCB=45°,
    ∵△ADE∽△CDB,,
    ∴∠DCB=∠EAD=∠EBD=45°,
    ∴AE=BE,∠AEB=90°,
    ∴△AEB为等腰直角三角形,
    ∴AB2=AE2+BE2=2BE2,
    ∵∠DCB =∠EBD,∠CEB =∠BED,
    ∴△CEB∽△BED,
    ∴即,
    ∴AB2=2BE2=2ED·EC.
    【点睛】
    本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键.

    相关试卷

    【真题汇总卷】湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解):

    这是一份【真题汇总卷】湖南省怀化市中考数学备考模拟练习 (B)卷(含答案详解),共28页。试卷主要包含了如图,等内容,欢迎下载使用。

    【中考特训】湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案及详解):

    这是一份【中考特训】湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共25页。试卷主要包含了一元二次方程的根为.等内容,欢迎下载使用。

    真题解析湖南省怀化市中考数学模拟真题 (B)卷(含答案详解):

    这是一份真题解析湖南省怀化市中考数学模拟真题 (B)卷(含答案详解),共29页。试卷主要包含了一元二次方程的根为,一元二次方程的根为.,生活中常见的探照灯等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map