浙江省部分地区2023-2024学年九上数学期末监测试题含答案
展开
这是一份浙江省部分地区2023-2024学年九上数学期末监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,某地质学家预测等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,这是二次函数的图象,则的值等于( )
A.B.C.D.
2.如图,点A、B、C在⊙O上,则下列结论正确的是( )
A.∠AOB=∠ACB
B.∠AOB=2∠ACB
C.∠ACB的度数等于的度数
D.∠AOB的度数等于的度数
3.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为( )
A.2B.0C.1D.2或0
4.若反比例函数的图象过点(-2,1),则这个函数的图象一定过点( )
A.(2,-1)B.(2,1)C.(-2,-1)D.(1,2)
5.如图,在中,,,,以点为圆心,长为半径画弧,交边于点,则阴影区域的面积为( )
A.B.C.D.
6.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是( )
A.从现在起经过13至14年F市将会发生一次地震
B.可以确定F市在未来20年内将会发生一次地震
C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大
D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生
7.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点 的坐标是( )
A.(2,10)B.(﹣2,0)
C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)
8.一元二次方程x2﹣3x=0的两个根是( )
A.x1=0,x2=﹣3B.x1=0,x2=3C.x1=1,x2=3D.x1=1,x2=﹣3
9.抛物线y=x2+2x﹣3的最小值是( )
A.3 B.﹣3 C.4 D.﹣4
10.已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是( )
A.点P在圆内 B.点P在圆上 C.点P在圆外 D.无法确定
11.下面四组线段中不能成比例线段的是( )
A.、、、B.、、、C.、、、D.、、、
12.对于二次函数的图象,下列说法正确的是( )
A.开口向下B.顶点坐标是
C.对称轴是直线D.与轴有两个交点
二、填空题(每题4分,共24分)
13.点A(﹣1,1)关于原点对称的点的坐标是_____.
14.如图,在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则=_______.
15.如图,在平面直角坐标系中,,P是经过O,A,B三点的圆上的一个动点(P与O,B两点不重合),则__________°,__________°.
16.关于的方程有两个不相等的实数根,那么的取值范围是__________.
17.已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).
18.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为_____.
三、解答题(共78分)
19.(8分)(1)解方程:
(2)如图,正六边形的边长为2,以点为圆心,长为半径画弧,求弧的长.
20.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(n,3)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出kx+b﹣>0时x的取值范围.
(3)若M是x轴上一点,且△MOB和△AOB的面积相等,求M点坐标.
21.(8分)已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).
(1)试确定此二次函数的解析式;
(2)请你判断点P(-2,3)是否在这个二次函数的图象上?
22.(10分)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E=,求DE的长.
23.(10分)某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价元时,日盈利为元.据此规律,解决下列问题:
(1)降价后每件商品盈利 元,超市日销售量增加 件(用含的代数式表示);
(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?
24.(10分)如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.
(1)求证:CD是⊙O的切线;
(2)若AD⊥CD,AB=10,AD=8,求AC的长;
(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.
25.(12分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)
26.(12分)中华人民共和国《城市道路路内停车泊位设置规范》规定:
米以上的,可在两侧设停车泊位,路幅宽米到米的,可在单侧设停车泊位,路幅宽米以下的,不能设停车泊位;米,车位宽米;米.
根据上述的规定,在不考虑车位间隔线和车道间隔线的宽度的情况下,如果在一条路幅宽为米的双向通行车道设置同一种排列方式的小型停车泊位,请回答下列问题:
(1)可在该道路两侧设置停车泊位的排列方式为 ;
(2)如果这段道路长米,那么在道路两侧最多可以设置停车泊位 个.
(参考数据:,)
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、B
4、A
5、C
6、C
7、C
8、B
9、D
10、C
11、B
12、B
二、填空题(每题4分,共24分)
13、(1,﹣1)
14、.
15、45 45或135
16、且
17、①③④.
18、1.
三、解答题(共78分)
19、(1),;(2)
20、(1)一次函数的解析式为y=﹣3x+9;(2)1<x<2;(3)点M的坐标为(3,0)或(﹣3,0).
21、(1)y=﹣x2﹣2x+1;(2)点P(﹣2,1)在这个二次函数的图象上,
22、(1)CB=2,AP =2;(2)证明见解析;(3)DE=.
23、(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.
24、(1)见解析;(2)AC的长为4;(3)AC=BC+EC,理由见解析
25、8.1m
26、(1)平行式或倾斜式.(2)1.
相关试卷
这是一份浙江省金华市金东区2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了化简的结果是,一元二次方程的解为等内容,欢迎下载使用。
这是一份浙江省金华市国际实验学校2023-2024学年九上数学期末监测试题含答案,共9页。试卷主要包含了如图,AB是⊙O的弦等内容,欢迎下载使用。
这是一份2023-2024学年浙江部分地区九上数学期末统考模拟试题含答案,共8页。试卷主要包含了抛物线y=22﹣1的顶点坐标是,已知3x=4y等内容,欢迎下载使用。