2023-2024学年湖北省武汉市东西湖区九年级数学第一学期期末考试模拟试题含答案
展开
这是一份2023-2024学年湖北省武汉市东西湖区九年级数学第一学期期末考试模拟试题含答案,共9页。试卷主要包含了函数的顶点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.函数y=3(x﹣2)2+4的图像的顶点坐标是( )
A.(3,4)B.(﹣2,4)C.(2,4)D.(2,﹣4)
2.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6B.12C.24D.不能确定
3.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是( )
A.B.C.D.
4.一个高为3 cm的圆锥的底面周长为8π cm,则这个圆锥的母线长度为( )
A.3 cmB.4 cmC.5 cmD.5π cm
5.若在实数范围内有意义,则的取值范围是( )
A.B.C.D.
6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将会爆炸,为了安全起见,气球的体积应( )
A.不小于B.大于C.不小于D.小于
7.下列图案中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
8.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为( )
A.B.
C.D.
9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )
A.B.C.D.
10.函数的顶点坐标是( )
A.B.C.D.
11.某射击运动员在同一条件下的射击成绩记录如表:
根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为( )
A.0.78B.0.79C.0.85D.0.80
12.一元二次方程的二次项系数、一次项系数和常数项分别是( )
A.3,2,1B.3,2,-1C.3,-2,1D.3,-2,-1
二、填空题(每题4分,共24分)
13.已知如图,是的中位线,点是的中点,的延长线交于点A,那么=__________.
14.如图,扇形OAB,∠AOB=90,⊙P 与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是 .
15.在平面直角坐标系中,已知点A(-6,3),B(9,0),以原点O为位似中心,相似比为,把△ABO缩小,则点A对应点A′的坐标是__________.
16.是方程的解,则的值__________.
17.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.
18.如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为_____.
三、解答题(共78分)
19.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:
设y与x的关系是我们所学过的某一种函数关系.
(1)写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
20.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
21.(8分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由)
.
22.(10分)如图,二次函数的图像经过,两点.
(1)求该函数的解析式;
(2)若该二次函数图像与轴交于、两点,求的面积;
(3)若点在二次函数图像的对称轴上,当周长最短时,求点的坐标.
23.(10分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若CE=,AB=6,求⊙O的半径.
24.(10分)如图,AB是⊙O的直径,C是⊙O上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.
25.(12分)在直角坐标平面内,直线分别与轴、轴交于点,.抛物线经过点与点,且与轴的另一个交点为.点在该抛物线上,且位于直线的上方.
(1)求上述抛物线的表达式;
(2)联结,,且交于点,如果的面积与的面积之比为,求的余切值;
(3)过点作,垂足为点,联结.若与相似,求点的坐标.
26.(12分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.
(1)求证:AB与⊙O相切;
(2)若AB=4,求线段GF的长.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、B
4、C
5、A
6、C
7、B
8、B
9、D
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、1:1
14、
15、(—2,1)或(2,—1)
16、
17、
18、2.1
三、解答题(共78分)
19、(1)y=−0.5x+160(120≤x≤180)(2)销售单价为180元时,销售利润最大,最大利润是7000元
20、(1)y=﹣x2+4x+5;(2)点P(,)时,S四边形APCD最大=;(3)当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).
21、⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶当∠B与∠D互补时,可使得DE+BF=EF.
22、(1);(2)6;(3)
23、(1)DE与⊙O相切;理由见解析;(2)4.
24、+
25、(1);(2);(3)的坐标为或
26、(1)见解析;(2)2.
射击次数
100
200
400
1000
“射中9环以上”的次数
78
158
321
801
“射中9环以上”的频率
0.78
0.79
0.8025
0.801
相关试卷
这是一份湖北省武汉市两学校2023-2024学年数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了-5的倒数是等内容,欢迎下载使用。
这是一份湖北省武汉市江夏区2023-2024学年九年级数学第一学期期末考试模拟试题含答案,共8页。试卷主要包含了关于二次函数,下列说法正确的是,如图,中,,,,则等内容,欢迎下载使用。
这是一份2023-2024学年湖北省武汉市黄陂区数学九年级第一学期期末调研模拟试题含答案,共7页。