2023-2024学年广东省广州市黄埔区数学九年级第一学期期末达标检测试题含答案
展开
这是一份2023-2024学年广东省广州市黄埔区数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法错误的是,求出函数解析式.等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.抛物线的对称轴是( )
A.直线B.直线
C.直线D.直线
2.如图,与相似,且,则下列比例式中正确的是( )
A.B.C.D.
3.抛物线y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.ab<0B.a+b+2c﹣2>0C.b2﹣4ac<0D.2a﹣b>0
4.如图,△ABC中,∠A=65°,AB=6,AC=3,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不构成相似的是( )
A.B.
C.D.
5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )
A.560(1+x)2=315B.560(1-x)2=315
C.560(1-2x)2=315D.560(1-x2)=315
6.下列说法错误的是( )
A.必然事件发生的概率是1
B.通过大量重复试验,可以用频率估计概率
C.概率很小的事件不可能发生
D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得
7.抛物线与轴交于、两点,则、两点的距离是( )
A.B.C.D.
8.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
9.如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且AD=2,AB=3,AE=4,则AC等于( )
A.5B.6C.7D.8
10.如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为( )
A.50B.60C.70D.80
11.下列命题是真命题的是( )
A.在同圆或等圆中,等弧所对的圆周角相等
B.平分弦的直径垂直于弦
C.在同圆或等圆中,等弦所对的圆周角相等
D.三角形外心是三条角平分线的交点
12.在单词prbability(概率)中任意选择一个字母,选中字母“i”的概率是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.已知是关于的方程的一个根,则______.
14.如图,,,△A2B2B3 是全等的等边三角形,点 B,B1,B2,B3 在同一条 直线上,连接 A2B 交 AB1 于点 P,交 A1B1 于点 Q,则 PB1∶QB1 的值为___.
15.若点P(m,-2)与点Q(3,n)关于原点对称,则=______.
16.如果,那么_____.
17.sin245°+ cs60°=____________.
18.已知扇形的圆心角为,所对的弧长为,则此扇形的面积是________.
三、解答题(共78分)
19.(8分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.
(1)如图1,若AD=DC,则BE的长为 ,BE2+CD2与AD2的数量关系为 ;
(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;
(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为 .
20.(8分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?
21.(8分)已知反比例函数y=(m为常数)的图象在第一、三象限
(1)求m的取值范围;
(2)如图,若该反比例函数的图象经过平行四边形ABOD的顶点D,点A、B的坐标分别为(0,3),(-2,0).求出函数解析式.
22.(10分)如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD
(1)试说明点D在⊙O上;
(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;
(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
23.(10分)已知等边△ABC的边长为2,
(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD
(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长
(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.
24.(10分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.
(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,
①求S与m的函数关系式,写出自变量m的取值范围.
②当S取得最值时,求点P的坐标;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
25.(12分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
请根据图表中所提供的信息,完成下列问题:
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?
26.(12分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.
(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果;
(2)求小明恰好抽中、两个项目的概率.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、D
4、C
5、B
6、C
7、B
8、B
9、B
10、B
11、A
12、A
二、填空题(每题4分,共24分)
13、9
14、
15、-1
16、2
17、1
18、
三、解答题(共78分)
19、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1
20、电线杆AB的高为8米
21、(1)m<;(2)y=
22、(1)证明见解析;(2)证明见解析;(3)EF=
23、(1)见解析;(2);(3)
24、(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,点P的坐标为(,3)或(﹣3+3,12﹣6).
25、(1)8,20,2.0≤x<2.4;(2)补图见解析;(3)该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.
26、(1)见解析;(2) .
分组
频数
1.2≤x<1.6
a
1.6≤x<2.0
12
2.0≤x<2.4
b
2.4≤x<2.8
10
相关试卷
这是一份广东省广州市玉岩中学2023-2024学年数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了已知2a=3b,方程组的解的个数为等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市从化区九年级数学第一学期期末达标检测试题含答案,共7页。试卷主要包含了下列图形中为中心对称图形的是,若x1是方程,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份广东省广州市广州大附属中学2023-2024学年八上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。