四川省成都市新都区2023-2024学年数学九年级第一学期期末达标检测试题含答案
展开
这是一份四川省成都市新都区2023-2024学年数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6B.12C.24D.不能确定
2.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点.AB⊥x轴于B,CD⊥x轴于D,当四边形ABCD的面积为6时,则k的值是( )
A.6B.3C.2D.
3.以原点为中心,把点逆时针旋转,得点,则点坐标是( )
A.B.C.D.
4.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于( )
A.3cmB.4cmC.5cmD.6cm
5.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表.则甲、乙、丙3名运动员测试成绩最稳定的是()
A.甲B.乙C.丙D.3人成绩稳定情况相同
6.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得( )
A.B.C.D.
7.已知二次函数,当时,该函数取最大值8.设该函数图象与轴的一个交点的横坐标为,若,则a的取值范围是( )
A.B.C.D.
8.在实数3.14,﹣π,,﹣中,倒数最小的数是( )
A.B.C.﹣πD.3.14
9.在同一平面直角坐标系中,函数与的图象可能是( )
A.B.
C.D.
10.下列说法正确的是( )
A.所有等边三角形都相似B.有一个角相等的两个等腰三角形相似
C.所有直角三角形都相似D.所有矩形都相似
二、填空题(每小题3分,共24分)
11.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.
12.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.
13.计算:sin45°·cs30°+3tan60°= _______________.
14.已知圆O的直径为4,点M到圆心O的距离为3,则点M与⊙O的位置关系是_____.
15.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_____km.
16.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.
17.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____.
18.已知P(﹣1,y1),Q(﹣1,y1)分别是反比例函数y=﹣图象上的两点,则y1_____y1.(用“>”,“<”或“=”填空)
三、解答题(共66分)
19.(10分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:
(1)图中的值是________;
(2)被查的200名生中最喜欢球运动的学生有________人;
(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
20.(6分)如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.
(1)求证:AE是⊙O的切线;
(2)已知点B是EF的中点,求证:△EAF∽△CBA;
(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.
21.(6分)定义:在平面直角坐标系中,对于任意两点,,若点满足,,那么称点是点,的融合点.
例如:,,当点满是,时,则点是点,的融合点,
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式.
②若直线交轴于点,当为直角三角形时,求点的坐标.
22.(8分)如图所示的直面直角坐标系中,的三个顶点坐标分别为,,.
(1)将绕原点逆时针旋转画出旋转后的;
(2)求出点到点所走过的路径的长.
23.(8分)某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.
24.(8分)如图,在平面直角坐标系中,一次函数的图像与轴交于点.二次函数的图像经过点,与轴交于点,与一次函数的图像交于另一点.
(1)求二次函数的表达式;
(2)当时,直接写出的取值范围;
(3)平移,使点的对应点落在二次函数第四象限的图像上,点的对应点落在直线上,求此时点的坐标.
25.(10分)一次知识竞赛中,有甲、乙、丙三名同学名次并列,但奖品只有两份,谁应 该得到奖品呢? 他们决定用抽签的方式来决定:取张大小、质地相同,分别标有数字的卡片,充分混匀后倒扣在桌子上,按甲、乙、丙的顺序,每人从中任意抽取一 张,取后不放回.规定抽到号或号卡片的人得到奖品.求甲、乙两人同时得到奖品 的概率.
26.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点 D,使四边形ABCD是以AC为“相似对角线”的四边形(画出1个即可);
(2)如图2,在四边形ABCD中,,对角线BD平分∠ABC.
求证: BD是四边形ABCD的“相似对角线”;
运用:
(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=.连接EG,若△EFG的面积为,求FH的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、D
5、A
6、B
7、B
8、A
9、D
10、A
二、填空题(每小题3分,共24分)
11、1
12、4
13、
14、在圆外
15、58
16、1
17、
18、<
三、解答题(共66分)
19、(1)35;(2)190;(3)所有可能的情况见解析,.
20、(1)证明见解析;(2)证明见解析;(3).
21、(1)点是点,的融合点;(2)①,②符合题意的点为, .
22、(1)见解析;(2)
23、薛老师所带班级有56人.
24、(1);(2)或;(3).
25、
26、(1)详见解析;(2)详见解析;(3)4
甲的成绩
乙的成绩
丙的成绩
环数
7
8
9
10
环数
7
8
9
10
环数
7
8
9
10
频数
4
6
6
4
频数
6
4
4
6
频数
5
5
5
5
相关试卷
这是一份四川省成都市新都区2023-2024学年九年级上学期期末考试数学试题(含答案),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省成都市新都区2023-2024学年九上数学期末检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图等内容,欢迎下载使用。
这是一份四川省成都市双流黄甲中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了方程x2﹣x=0的解为,下列运算正确的是等内容,欢迎下载使用。