2023-2024学年山东省莒县数学九上期末学业水平测试试题含答案
展开
这是一份2023-2024学年山东省莒县数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知方程的两根为,则的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )
A.x2+1=0B.x2+2x+1=0C.x2+2x+3=0D.x2+2x-3=0
2.抛物线的对称轴是( )
A.B.C.D.
3.如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是( )
A.
B.
C.,,三点在同一直线上
D.
4.能判断一个平行四边形是矩形的条件是( )
A.两条对角线互相平分B.一组邻边相等
C.两条对角线互相垂直D.两条对角线相等
5.若一次函数 y=ax+b(a≠0)的图像与 x 轴交点坐标为(2,0),则抛物线y=ax2+bx+c的对称轴为( )
A.直线 x=1B.直线 x=-1C.直线 x=2D.直线 x=-2
6.以下给出的几何体中,主视图是矩形,俯视图是圆的是( )
A.B.C.D.
7.已知方程的两根为,则的值是( )
A.1B.2C.-2D.4
8.二次函数中与的部分对应值如下表所示,则下列结论错误的是( )
A.
B.当时,的值随值的增大而减小
C.当时,
D.方程有两个不相等的实数根
9.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是 ( )
A.平均数B.方差C.中位数D.众数
10.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=1.则△PEF的周长为( )
A.1B.15C.20D.25
二、填空题(每小题3分,共24分)
11.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.
12.关于x的一元二次方程的一个根为1,则方程的另一根为______.
13.若点、在二次函数的图象上,则的值为________.
14.如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是______.
15.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为_____.
16.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.
17.如图是抛物线y=-x2+bx+c的部分图象,若y>0,则x的取值范围是_______________.
18.公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了有关黄金矩形的问题.并建立起比例理论,他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中较长部分对于全部之比,等于较短部分对于较长部分之比.所谓黄金矩形指的就是矩形的宽与长的比适合这一比例.则在黄金矩形中宽与长的比值是______.
三、解答题(共66分)
19.(10分)如图所示,某学校有一边长为20米的正方形区域(四周阴影是四个全等的矩形,记为区域甲;中心区是正方形,记为区域乙).区域甲建设成休闲区,区域乙建成展示区,已知甲、乙两个区域的建设费用如下表:
设矩形的较短边的长为米,正方形区域建设总费用为百元.
(1)的长为 米(用含的代数式表示);
(2)求关于的函数解析式;
(3)当中心区的边长要求不低于8米且不超过12米时,预备建设资金220000元够用吗?请利用函数的增减性来说明理由.
20.(6分)如图,某校数学兴趣小组为测量该校旗杆及笃志楼的高度,先在操场的处用测角仪测得旗杆顶端的仰角为,此时笃志楼顶端恰好在视线上,再向前走到达处,用该测角仪又测得笃志楼顶端的仰视角为.已知测角仪高度为,点、、在同一水平线上.
(1)求旗杆的高度;
(2)求笃志楼的高度(精确到).(参考数据:,)
21.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字 1, 2, 3, 4 的 4 个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于 2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.
22.(8分)例:利用函数图象求方程x2﹣2x﹣2=0的实数根(结果保留小数点后一位).
解:画出函数y=x2﹣2x﹣2的图象,它与x轴的公共点的横坐标大约是﹣0.1,2.1.所以方程x2﹣2x﹣2=0的实数根为x1≈﹣0.1,x2≈2.1.我们还可以通过不断缩小根所在的范围估计一元二次方程的根.……这种求根的近似值的方法也适用于更高次的一元方程.
根据你对上面教材内容的阅读与理解,解决下列问题:
(1)利用函数图象确定不等式x2﹣4x+3<0的解集是 ;利用函数图象确定方程x2﹣4x+3=的解是 .
(2)为讨论关于x的方程|x2﹣4x+3|=m解的情况,我们可利用函数y=|x2﹣4x+3|的图象进行研究.
①请在网格内画出函数y=|x2﹣4x+3|的图象;
②若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解,则m的取值范围为 ;
③若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解x1,x2,x3,x4(x1<x2<x3<x4),满足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.
23.(8分)元旦期间,商场中原价为 100元的某种商品经过两次连续降价后以每件81元出售,设这种商品每次降价的百分率相同,求这个百分率.
24.(8分)已知反比例函数的图象经过点(2,﹣2).
(I)求此反比例函数的解析式;
(II)当y≥2时,求x的取值范围.
25.(10分)某中学举行“中国梦,我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.
(1)参加比赛的学生共有 名,在扇形统计图中,表示“D等级”的扇形的圆心角为 度,图中m的值为 ;
(2)补全条形统计图;
(3)组委会决定分别从本次比赛中获利A、B两个等级的学生中,各选出1名学生培训后搭档去参加市中学生演讲比赛,已知甲的等级为A,乙的等级为B,求同时选中甲和乙的概率.
26.(10分)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.
(1)求k和m的值;
(2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、B
4、D
5、A
6、D
7、A
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、1
12、-1
13、-1
14、
15、1.
16、1米
17、-3<x<1
18、
三、解答题(共66分)
19、(1);(2)y=;(3)预备建设资金220000元不够用,见解析
20、(1)9.5m;(2)20.5m.
21、不公平
22、 (2) 2<x<3,x=4;(2) ①见解析,②0<m<2,③m=0.8
23、10%
24、 (I) y=﹣;(II) 当y≥2时,﹣2≤x<1
25、(1)20,72,1;(2)见解析;(3)
26、 (1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-.
区域
甲
乙
价格(百元米2)
6
5
相关试卷
这是一份2023-2024学年山东省聊城市城区数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程等内容,欢迎下载使用。
这是一份山东省烟台市名校2023-2024学年数学九上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,sin 30°的值为,下列图象能表示y是x的函数的是等内容,欢迎下载使用。
这是一份山东省莒县2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了把二次函数y=﹣等内容,欢迎下载使用。