2023-2024学年河北省保定市定州市九上数学期末监测试题含答案
展开
这是一份2023-2024学年河北省保定市定州市九上数学期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.下列方程中是一元二次方程的是( )
A.xy+2=1B.
C.x2=0D.ax2+bx+c=0
2.在平面直角坐标系中,点,,过第四象限内一动点作轴的垂线,垂足为,且,点、分别在线段和轴上运动,则的最小值是( )
A.B.C.D.
3.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有( )
①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.
A.4个B.3个C.2个D.1个
4.已知点是一次函数的图像和反比例函数的图象的交点,当一次函数的值大于反比例函数的值时,的取值范围是( )
A.或B.
C.或D.
5.把图1的正方体切下一个角,按图2放置,则切下的几何体的主视图是( )
A.B.C.D.
6.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A.B.C.D.
7.二次函数的图象与轴有且只有一个交点,则的值为( )
A.1或-3B.5或-3C.-5或3D.-1或3
8.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( )
A.y=B.y=C.y=D.y=
9.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是( )
A.k<1且k≠0B.k≤1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0
10.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第_________个图形有94个小圆.
12.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是 .
13.若正六边形的边长为2,则此正六边形的边心距为______.
14.已知点与点关于原点对称,则__________.
15.如图,若内一点满足,则称点为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知中,,,为的布罗卡尔点,若,则________.
16.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
17.二次函数的图象与轴只有一个公共点,则的值为________.
18.如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为______.
三、解答题(共66分)
19.(10分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.
(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;
(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?
20.(6分)如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且=,过点E作EF⊥BC于点F,延长FE和BA的延长线交与点G.
(1)证明:GF是⊙O的切线;
(2)若AG=6,GE=6,求⊙O的半径.
21.(6分)如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.
(1)求A,D两点的坐标;
(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.
①当点P的横坐标为2时,求△PAD的面积;
②当∠PDA=∠CAD时,直接写出点P的坐标.
22.(8分)(1)解方程:.
(2)已知:关于x的方程
①求证:方程有两个不相等的实数根;
②若方程的一个根是,求另一个根及k值.
23.(8分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶5次,成绩统计如下表:
(1)甲、乙的平均成绩分别是多少?
(2)甲、乙这5次比赛的成绩的方差分别是多少?
(3)如果规定成绩较稳定者胜出,你认为谁应该胜出?说明你的理由;
(4)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?
24.(8分)如图1,若二次函数的图像与轴交于点(-1,0)、,与轴交于点(0,4),连接、,且抛物线的对称轴为直线.
(1)求二次函数的解析式;
(2)若点是抛物线在一象限内上方一动点,且点在对称轴的右侧,连接、,是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;
(3)如图2,若点是抛物线上一动点,且满足,请直接写出点坐标.
25.(10分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB.
(1)证明:△ADC∽△ACB;
(2)若AD=2,BD=6,求边AC的长.
26.(10分)随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡的坡角为,水平线.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到,参考数据:,,).
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、C
5、B
6、B
7、B
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、9.
12、.
13、.
14、1
15、
16、2:1
17、
18、
三、解答题(共66分)
19、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块
20、(1)见解析;(2)1
21、(1)A(1,0),D(4,3);(2)①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.
22、(1)x1=1,x1=1;(1)①见解析;②另一个根为1,
23、(1)=8(环),=8(环);(2),;(3)甲胜出,理由见解析;(4)见解析.
24、(1) (2)存在, (3)Q点的坐标为或
25、(1)见解析; (2)1.
26、2.6米.
相关试卷
这是一份河北省保定市定兴县2023-2024学年九上数学期末调研试题含答案,共8页。试卷主要包含了一元二次方程的解为等内容,欢迎下载使用。
这是一份2023-2024学年河北省定州市杨家庄初级中学九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年河北省保定市第十七中学九上数学期末学业质量监测试题含答案,共7页。试卷主要包含了如图,点,,都在上,,则等于等内容,欢迎下载使用。