2023-2024学年山东省枣庄市峄城区底阁镇九年级数学第一学期期末考试试题含答案
展开
这是一份2023-2024学年山东省枣庄市峄城区底阁镇九年级数学第一学期期末考试试题含答案,共9页。试卷主要包含了在中,,,,则直角边的长是,已知反比例函数的图象经过点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是( )
A.梯形B.矩形C.菱形D.正方形
2.二次函数y=ax2+bx+c的y与x的部分对应值如下表:
则下列判断中正确的是( )
A.抛物线开口向上B.抛物线与y轴交于负半轴
C.当x=﹣1时y>0D.方程ax2+bx+c=0的负根在0与﹣1之间
3.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是( )
A.P在圆内B.P在圆上C.P在圆外D.无法确定
4.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是( )
①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).
A.1B.2C.3D.4
5.在Rt△ABC中,∠C=90°,若,则的值为( )
A.1B.C.D.
6.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是( ).
A.55°B.60°C.65°D.70°
7.在▱ABCD中,∠ACB=25°,现将▱ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数( )
A.135°B.120°C.115°D.100°
8.在中,,,,则直角边的长是( )
A.B.C.D.
9.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是( )
A.铜陵市明天将有75%的时间降水B.铜陵市明天将有75%的地区降水
C.铜陵市明天降水的可能性比较大D.铜陵市明天肯定下雨
10.已知反比例函数的图象经过点(1,2),则k的值为( )
A.0.5B.1C.2D.4
二、填空题(每小题3分,共24分)
11.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.
12.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.
13.下列投影或利用投影现象中,________是平行投影,________是中心投影. (填序号)
14.在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.
15.如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.
16.如图,在正方形ABCD的外侧,作等边△ABE,则∠BFC=_________°
17.如果,那么锐角_________°.
18.函数y=kx,y=,y=的图象如图所示,下列判断正确的有_____.(填序号)①k,a,b都是正数;②函数y=与y=的图象会出现四个交点;③A,D两点关于原点对称;④若B是OA的中点,则a=4b.
三、解答题(共66分)
19.(10分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:
(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):
(1)填空:线段AB的长度d= ;弯折后A、B两点的距离x的取值范围是 ;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”) ;若面积S=1.5时,点C将线段AB分成两段的长分别是 ;
(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h= ,该函数图象与⊙O的位置关系是 .
(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.
20.(6分)如图,已知平行四边形中,,,.平行四边形的顶点在线段上(点在的左边),顶点分别在线段和上.
(1)求证:;
(2)如图1,将沿直线折叠得到,当恰好经过点时,求证:四边形是菱形;
(3)如图2,若四边形是矩形,且,求的长.(结果中的分母可保留根式)
21.(6分)如图,已知线段与点,若在线段上存在点,满足,则称点为线段的“限距点”.
(1)如图,在平面直角坐标系中,若点.
①在中,是线段的“限距点”的是 ;
②点是直线上一点,若点是线段的“限距点”,请求出点横坐标的取值范围.
(2)在平面直角坐标系中,点,直线与轴交于点,与轴交于点. 若线段上存在线段的“限距点”,请求出的取值范围.
22.(8分)如图,在平面直角坐标系xOy中,A(3,4),B(0,﹣1),C(4,0).
(1)以点B为中心,把△ABC逆时针旋转90°,画出旋转后的图形;
(2)在(1)中的条件下,
①点C经过的路径弧的长为 (结果保留π);
②写出点A'的坐标为 .
23.(8分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.
(1)求摸出的2个球都是白球的概率.
(2)请比较①摸出的2个球颜色相同②摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由
24.(8分)如图,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.
(1)求此抛物线的表达式;
(2)求过B、C两点的直线的函数表达式;
(3)点P是第一象限内抛物线上的一个动点.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点P的坐标,若不存在,请说明理由;
25.(10分)在平面直角坐标系中的位置如图所示.
在图中画出关于轴对称的图形,并写出顶点的坐标;
将向下平移个单位长度,再向左平移个单位长度得到,画出平移后的,并写出顶点的坐标.
26.(10分)大学生小李和同学一起自主创业开办了一家公司,公司对经营的盈亏情况在每月的最后一天结算一次.在1-12月份中,该公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系.
(1)求y与x函数关系式.
(2)该公司从哪个月开始“扭亏为盈”(当月盈利)? 直接写出9月份一个月内所获得的利润.
(3)在前12 个月中,哪个月该公司所获得利润最大?最大利润为多少?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、C
4、B
5、B
6、B
7、C
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、
12、x(x+12)=1
13、④⑥ ①②③⑤
14、或
15、
16、1
17、30
18、①③④
三、解答题(共66分)
19、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.
20、(1)详见解析;(2)详见解析;(3)
21、(1)①;②或;(2).
22、(1)见解析;(2)①,②(﹣5,2).
23、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.
24、(1)y=﹣x2+x+4;(2)y=﹣x+4;(3)存在,(1,4)或(,).
25、(1)作图见解析,;(2)作图见解析,
26、(1) ;(2)从4月份起扭亏为盈; 9月份一个月利润为11万元 ;(3)12,17万元.
x
…
0
1
3
4
…
y
…
2
4
2
﹣2
…
相关试卷
这是一份山东省峄城区底阁镇中学2023-2024学年九年级数学第一学期期末考试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,抛物线y=2+4的顶点坐标是,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省枣庄市峄城区底阁镇九上数学期末综合测试模拟试题含答案,共7页。
这是一份山东省枣庄市峄城区底阁镇2023-2024学年八年级数学第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列四个命题中,是真命题的是等内容,欢迎下载使用。