2023-2024学年山东省枣庄市薛城区九年级数学第一学期期末学业质量监测试题含答案
展开
这是一份2023-2024学年山东省枣庄市薛城区九年级数学第一学期期末学业质量监测试题含答案,共7页。试卷主要包含了二次函数y=ax2+bx+c,下列图形中是中心对称图形的有个等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.方程的解的个数为( )
A.0B.1C.2D.1或2
2. 如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是( )
A.20°B.30°C.40°D.70°
3.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )
A.40°B.50°C.60°D.80°
4.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )
A.B.C.D.
5.一元二次方程2x2+3x+5=0的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
6.若点 A、B、C 都在二次函数的图象上,则的大小关系为( )
A.B.C.D.
7.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是( )
A.铜陵市明天将有75%的时间降水B.铜陵市明天将有75%的地区降水
C.铜陵市明天降水的可能性比较大D.铜陵市明天肯定下雨
8.下列图形中是中心对称图形的有( )个.
A.1B.2C.3D.4
9.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为( )
A.2,22.5°B.3,30°C.3,22.5°D.2,30°
10.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有( )
A.6个B.16个C.18个D.24个
二、填空题(每小题3分,共24分)
11.如图,OA、OB是⊙O的半径,CA、CB是⊙O的弦,∠ACB=35°,OA=2,则图中阴影部分的面积为_____.(结果保留π)
12.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.
13.如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.
14.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.
15.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)
16.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.
17.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF︰GH= .
18.一个盒子中装有个红球,个白球和个蓝球,这些球除了颜色外都相同,从中随机摸出两个球,能配成紫色的概率为_____.
三、解答题(共66分)
19.(10分)计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 °;
(2)请你将条形统计图补充完整;
(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数
20.(6分)如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.
(1)求证:AE是⊙O的切线;
(2)已知点B是EF的中点,求证:△EAF∽△CBA;
(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.
21.(6分)如图是某一蓄水池每小时的排水量/与排完水池中的水所用时间之间的函数关系的图像.
(1)请你根据图像提供的信息写出此函数的函数关系式;
(2)若要6h排完水池中的水,那么每小时的排水量应该是多少?
22.(8分)用适当的方法解下列方程:
(1)x2-6x+1=0
(2)x2-4=2x+4
23.(8分)如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.
(1)画出△A'B'C',并写出点A',B',C'的坐标;
(2)求经过点B',B,A三点的抛物线对应的函数解析式.
24.(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
25.(10分)伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6
(1)当每吨销售价为多少万元时,销售利润为0.96万元?
(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?
26.(10分)如图,在□中, 是上一点,且,与的延长线交点.
(1)求证:△∽△;
(2)若△的面积为1,求□ 的面积.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、D
4、D
5、D
6、D
7、C
8、B
9、A
10、B
二、填空题(每小题3分,共24分)
11、
12、
13、
14、1
15、π
16、
17、3:2.
18、
三、解答题(共66分)
19、(1)200;72(2)60(人),图见解析(3)1050人.
20、(1)证明见解析;(2)证明见解析;(3).
21、(1); (2)8m3
22、(1)x1=3+2,x2=3-2 ;(2)x1=-2,x2=4
23、(1)见解析;(2)抛物线的解析式为y=﹣x2+x+1.
24、(1);(2)
25、(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.
26、(1)证明见解析;(2)24
相关试卷
这是一份2023-2024学年山东省枣庄市薛城区奚仲中学数学九年级第一学期期末经典模拟试题含答案,共8页。
这是一份山东省枣庄市薛城区临城2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标是等内容,欢迎下载使用。
这是一份2023-2024学年山东省枣庄市薛城区数学九年级第一学期期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标为,下列方程是一元二次方程的是等内容,欢迎下载使用。