搜索
    上传资料 赚现金
    英语朗读宝

    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件

    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第1页
    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第2页
    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第3页
    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第4页
    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第5页
    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第6页
    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第7页
    北师大版数学八年级下册 6.2 第2课时 利用四边形对角线的性质判定-课件第8页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版八年级下册2 平行四边形的判定说课ppt课件

    展开

    这是一份初中数学北师大版八年级下册2 平行四边形的判定说课ppt课件,共18页。PPT课件主要包含了学习目标,导入新课,平行四边形判定定理,复习引入,讲授新课,合作探究,OAOC已知,OBOD已知,∵AOCO,BODO等内容,欢迎下载使用。
    1.利用对角线互相平分判定平行四边形;(重点)
    2.平行四边形对角线相等的相关运用.(难点)
    两组对边分别相等的四边形是平行四边形
    一组对边平行且相等的四边形是平行四边形
    两组对角分别相等的四边形是平行四边形
    ∵AB=CD,AD=BC,∴四边形ABCD是 ABCD
    ∵ AB= CD, AB∥C D,∴四边形ABCD是 ABCD
    ∵ ∠ A= ∠ C, ∠ B= ∠ D,∴四边形ABCD是 ABCD
    将两根木条AC,BD的中点重叠,并用钉子固定,再用一根橡皮筋绕端点A,B,C,D围成一个四边形ABCD .想一想,△AOB≌△COD吗?四边形ABCD的对边之间有什么关系?你得到什么结论?
    猜想:对角线互相平分的四边形是平行四边形.
    已知:四边形ABCD中,OA=OC,OB=OD.求证:四边 形ABCD是平行四边形.
    在△AOB和△COD中,
    ∠AOB=∠COD (对顶角相等)
    ∴△AOB≌△COD(SAS)
    ∴ ∠BAO=∠OCD , ∠ ABO=∠CDO.
    ∴AB∥ CD , AD∥ BC
    ∴四边形ABCD是平行四边形.
    对角线互相平分的四边形是平行四边形.
    1.请你识别下列四边形哪些是平行四边形?
    2.已知:E、F是平行四边形ABCD对角线AC上的两点,并且OE=OF.求证:四边形BFDE是平行四边形
    证明: ∵四边形ABCD是平行四边形,∴ BO = DO.∵ EO = FO,∴ 四边形BFDE是平行四边形.
    例1 已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.
    在ABCD中,AO=CO,BO=DO
    ∴AO-AE=CO-CF
    又 ∵BO=DO
    ∴ 四边形BFDE是平行四边形.
    (对角线互相平分的四边形是平行四边形)
    (4)如图, □ABCD 的对角线AC,BD相交于点O,E,F是AC上的两点,补充条件: ,使得四边形BFDE是平行四边形.
    证明:∵四边形ABCD是平行四边形,
    ∴ AO=CO,BO=DO.
    ∴ AO-AE=CO-CF,即EO=OF.
    ∴四边形BFDE是平行四边形.
    想一想:判定一个四边形是平行边形可以从哪些角度思考?具体有哪些方法?
    两组对边分别平行的四边形是平行四边形(定义法)
    两组对边分别相等的四边形是平行四边形(判定定理1)
    一组对边平行且相等的四边形是平行四边形(判定定理2)
    两组对角分别相等的四边形是平行四边形(定义拓展)
    对角线互相平分的四边形是平行四边形(判定定理3)
    小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.
    解:有6个平行四边形,分别是:  ABOF, ABCO, BCDO, CDEO, DEFO, EFAO.
    1. 根据下列条件,不能判定一个四边形为平行四边形的是( )
    A. 两组对边分别相等
    B . 两条对角线互相平分
    C . 两条对角线相等
    D . 两组对边分别平行
    3.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.
    ∴△ABE≌△FCE(AAS); ∴AE=EF,又∵BE=CE∴四边形ABFC是平行四边形.
    解:四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,

    相关课件

    初中数学北师大版八年级下册2 平行四边形的判定备课课件ppt:

    这是一份初中数学北师大版八年级下册2 平行四边形的判定备课课件ppt,共17页。PPT课件主要包含了学习目标,平行四边形判定定理,复习引入,合作探究,OAOC已知,OBOD已知,∵AOCO,BODO,几何语言,平行四边形判定定理3等内容,欢迎下载使用。

    初中北师大版2 平行四边形的判定多媒体教学ppt课件:

    这是一份初中北师大版2 平行四边形的判定多媒体教学ppt课件,共29页。PPT课件主要包含了第六章平行四边形,平行四边形的性质,平行四边形的对边平行,平行四边形的对边相等,平行四边形的对角相等,平行四边形的邻角互补,对称性,对角线,知识回顾,连接BD等内容,欢迎下载使用。

    数学八年级下册1 平行四边形的性质课文ppt课件:

    这是一份数学八年级下册1 平行四边形的性质课文ppt课件,共21页。PPT课件主要包含了猜一猜,这个结论正确吗,量一量,这个方法准确吗,验一验,证一证,要点归纳,平行四边形的性质,应用格式,重要结论等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map