年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学二轮复习专题10二次函数含解析答案

    中考数学二轮复习专题10二次函数含解析答案第1页
    中考数学二轮复习专题10二次函数含解析答案第2页
    中考数学二轮复习专题10二次函数含解析答案第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习专题10二次函数含解析答案

    展开

    这是一份中考数学二轮复习专题10二次函数含解析答案,共19页。试卷主要包含了已知抛物线,定义,以初速度v等内容,欢迎下载使用。

    1.二次函数y=ax2+bx+c,若ab<0,a﹣b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )
    A.y1=﹣y2B.y1>y2
    C.y1<y2D.y1、y2的大小无法确定
    2.二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是( )
    A.B.C.D.
    3.已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )
    A.或2B.C.2D.
    4.抛物线的函数表达式为,若将轴向上平移2个单位长度,将轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
    A.B.
    C.D.
    5.已知抛物线(是常数,)经过点,当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③.其中,正确结论的个数是( )
    A.0B.1C.2D.3
    6.已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是( )
    A.1B.2C.3D.4
    7.如图是抛物线的部分图象,图象过点,对称轴为直线,有下列四个结论:①;②;③y的最大值为3;④方程有实数根.其中正确的为 (将所有正确结论的序号都填入).
    8.定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是 .
    9.以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2= .
    10.已知抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点在抛物线上,E是该抛物线对称轴上一动点.当的值最小时,的面积为 .
    11.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是 元.
    12.在平面直角坐标系中,点和点在抛物线上.
    (1)若,求该抛物线的对称轴;
    (2)已知点在该抛物线上.若,比较的大小,并说明理由.
    13.如图,二次函数(a为常数)的图象的对称轴为直线.
    (1)求a的值.
    (2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
    14.已知二次函数的图像经过两点.
    (1)求b的值.
    (2)当时,该函数的图像的顶点的纵坐标的最小值是________.
    (3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.
    15.红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).
    (1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
    (2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?
    (3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.
    16.某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.
    (1)求雕塑高OA.
    (2)求落水点C,D之间的距离.
    (3)若需要在OD上的点E处竖立雕塑EF,,.问:顶部F是否会碰到水柱?请通过计算说明.
    评卷人
    得分
    一、单选题
    评卷人
    得分
    二、填空题
    评卷人
    得分
    三、解答题
    评卷人
    得分
    四、计算题
    参考答案:
    1.B
    【分析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.
    【详解】∵a﹣b2>0,b2≥0,
    ∴a>0.
    又∵ab<0,
    ∴b<0,
    ∵x1<x2,x1+x2=0,
    ∴x2=﹣x1,x1<0.
    ∵点A(x1,y1),B(x2,y2)在该二次函数y=ax2+bx+c的图象上,
    ∴ ,.
    ∴y1﹣y2=2bx1>0.
    ∴y1>y2.
    故选:B.
    【点睛】本题主要考查二次函数的性质,二次函数图象上点的坐标特征和函数值的大小比较,解题的关键是判断出字母系数的取值范围.
    2.A
    【分析】先分析二次函数的图像的开口方向即对称轴位置,而一次函数的图像恒过定点,即可得出正确选项.
    【详解】二次函数的对称轴为,一次函数的图像恒过定点,所以一次函数的图像与二次函数的对称轴的交点为,只有A选项符合题意.
    故选A.
    【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数的图像恒过定点,本题蕴含了数形结合的思想方法等.
    3.B
    【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.
    【详解】解:函数向右平移3个单位,得:;
    再向上平移1个单位,得:+1,
    ∵得到的抛物线正好经过坐标原点
    ∴+1即
    解得:或
    ∵抛物线的对称轴在轴右侧
    ∴>0
    ∴<0

    故选:B.
    【点睛】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.
    4.C
    【分析】将题意中的平移方式转换成函数图像的平移,再求解析式即可.
    【详解】解:若将轴向上平移2个单位长度,
    相当于将函数图像向下平移2个单位长度,
    将轴向左平移3个单位长度,
    相当于将函数图像向右平移3个单位长度,
    则平移以后的函数解析式为:
    化简得:,
    故选:C.
    【点睛】本题主要考查二次函数图像的平移,将题意中的平移方式转换为函数图像的平移是解决本题的关键.
    5.D
    【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可
    【详解】∵抛物线(是常数,)经过点,当时,与其对应的函数值.
    ∴c=1>0,a-b+c= -1,4a-2b+c>1,
    ∴a-b= -2,2a-b>0,
    ∴2a-a-2>0,
    ∴a>2>0,
    ∴b=a+2>0,
    ∴abc>0,
    ∵,
    ∴△==>0,
    ∴有两个不等的实数根;
    ∵b=a+2,a>2,c=1,
    ∴a+b+c=a+a+2+1=2a+3,
    ∵a>2,
    ∴2a>4,
    ∴2a+3>4+3>7,
    故选D.
    【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.
    6.A
    【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.
    【详解】解:∵抛物线的开口向上,
    ∴a>0,故①正确;
    ∵抛物线与x轴没有交点
    ∴<0,故②错误
    ∵由抛物线可知图象过(1,1),且过点(3,3)
    ∴8a+2b=2
    ∴4a+b=1,故③错误;
    由抛物线可知顶点坐标为(1,1),且过点(3,3)
    则抛物线与直线y=x交于这两点
    ∴<0可化为,
    根据图象,解得:1<x<3
    故④错误.
    故选A.
    【点睛】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.
    7.②④
    【分析】根据二次函数的图象与性质对各项进行判断即可.
    【详解】解:∵抛物线的开口向下,与y轴的交点在y轴的正半轴,
    ∴a<0,c>0,
    ∵抛物线的对称轴为直线x=1,
    ∴﹣=1,即b=﹣2a>0
    ∴abc<0,故①错误;
    ∵抛物线与x轴的一个交点坐标为(3,0),
    ∴根据对称性,与x轴的另一个交点坐标为(﹣1,0),
    ∴a﹣b+c=0,故②正确;
    根据图象,y是有最大值,但不一定是3,故③错误;
    由得,
    根据图象,抛物线与直线y=﹣1有交点,
    ∴有实数根,故④正确,
    综上,正确的为②④,
    故答案为:②④.
    【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,会利用数形结合思想解决问题是解答的关键.
    8.①②③.
    【分析】利用二次函数的性质根据特征数,以及的取值,逐一代入函数关系式,然判断后即可确定正确的答案.
    【详解】解:当时,
    把代入,可得特征数为
    ∴,,,
    ∴函数解析式为,函数图象的对称轴是轴,故①正确;
    当时,
    把代入,可得特征数为
    ∴,,,
    ∴函数解析式为,
    当时,,函数图象过原点,故②正确;
    函数
    当时,函数图像开口向上,有最小值,故③正确;
    当时,函数图像开口向下,
    对称轴为:
    ∴时,可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其增减性,故④错误;
    综上所述,正确的是①②③,
    故答案是:①②③.
    【点睛】本题考查了二次函数的图像与性质,二次函数的对称轴等知识点,牢记二次函数的基本性质是解题的关键.
    9.
    【分析】根据函数图像分别求出两个函数解析式,表示出,,,,结合h1=2h2,即可求解.
    【详解】解:由题意得,图1中的函数图像解析式为:h=v1t4.9t2,令h=0,或(舍去),,
    图2中的函数解析式为:h=v2t4.9t2, 或(舍去),,
    ∵h1=2h2,
    ∴=2,即:=或=-(舍去),
    ∴t1:t2=:=,
    故答案是:.
    【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图像和性质,二次函数的顶点坐标公式,是解题的关键.
    10.4
    【分析】根据题意画出函数图像,要使的值最小,需运用对称相关知识求出点E的坐标,然后求的面积即可.
    【详解】解:根据题意可求出,
    抛物线的对称轴为:,
    根据函数对称关系,点B关于的对称点为点A,
    连接AD与交于点E,
    此时的值最小,
    过D点作x轴垂线,垂足为F,
    设抛物线对称轴与x轴交点为G,
    ∵,
    ∴,
    ∴,
    ∴,
    过点C作的垂线,垂足为H,
    所以四边形ACHE的面积等于与梯形ACHG的面积和,
    即,
    则S四边形ACHE-,
    故答案为:4.
    【点睛】本题主要考查二次函数的交点坐标、对称轴、相似三角形、对称等知识点,根据题意画出图形,可以根据对称求出点E的坐标是解决本题的关键.
    11.1264
    【分析】根据题意,总利润=快餐的总利润+快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可.
    【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份.
    据题意:,

    ∴,
    ∵,
    ∴当的时候,W取到最大值1264,故最大利润为1264元,
    故答案为:1264.
    【点睛】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点.
    12.(1);(2),理由见解析
    【分析】(1)由题意易得点和点,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可;
    (2)由题意可分当时和当时,然后根据二次函数的性质进行分类求解即可.
    【详解】解:(1)当时,则有点和点,代入二次函数得:
    ,解得:,
    ∴抛物线解析式为,
    ∴抛物线的对称轴为;
    (2)由题意得:抛物线始终过定点,则由可得:
    ①当时,由抛物线始终过定点可得此时的抛物线开口向下,即,与矛盾;
    ②当时,
    ∵抛物线始终过定点,
    ∴此时抛物线的对称轴的范围为,
    ∵点在该抛物线上,
    ∴它们离抛物线对称轴的距离的范围分别为,
    ∵,开口向上,
    ∴由抛物线的性质可知离对称轴越近越小,
    ∴.
    【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.
    13.(1);(2)
    【分析】(1)把二次函数化为一般式,再利用对称轴:,列方程解方程即可得到答案;
    (2)由(1)得:二次函数的解析式为:,再结合平移后抛物线过原点,则 从而可得平移方式及平移后的解析式.
    【详解】解:(1).
    ∵图象的对称轴为直线,
    ∴,
    ∴.
    (2)∵,
    ∴二次函数的表达式为,
    ∴抛物线向下平移3个单位后经过原点,
    ∴平移后图象所对应的二次函数的表达式为.
    【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,二次函数图像的平移,熟练掌握二次函数的基础知识是解题的关键.
    14.(1);(2)1;(3)或.
    【分析】(1)将点代入求解即可得;
    (2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;
    (3)分和两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.
    【详解】解:(1)将点代入得:,
    两式相减得:,
    解得;
    (2)由题意得:,
    由(1)得:,
    则此函数的顶点的纵坐标为,
    将点代入得:,
    解得,
    则,
    下面证明对于任意的两个正数,都有,

    (当且仅当时,等号成立),
    当时,,
    则(当且仅当,即时,等号成立),
    即,
    故当时,该函数的图像的顶点的纵坐标的最小值是1;
    (3)由得:,
    则二次函数的解析式为,
    由题意,分以下两种情况:
    ①如图,当时,则当时,;当时,,
    即,
    解得;
    ②如图,当时,
    当时,,
    当时,,
    解得,
    综上,的取值范围为或.
    【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.
    15.(1);(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.
    【分析】(1)分和两种情况,根据“月销售单价每涨价1元,月销售量就减少万件”即可得函数关系式,再根据求出的取值范围;
    (2)在(1)的基础上,根据“月利润(月销售单价成本价)月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;
    (3)设该产品的捐款当月的月销售利润为万元,先根据捐款当月的月销售单价、月销售最大利润可得,再根据“月利润(月销售单价成本价)月销售量”建立函数关系式,然后利用二次函数的性质即可得.
    【详解】解:(1)由题意,当时,,
    当时,,


    解得,
    综上,;
    (2)设该产品的月销售利润为万元,
    ①当时,,
    由一次函数的性质可知,在内,随的增大而增大,
    则当时,取得最大值,最大值为;
    ②当时,,
    由二次函数的性质可知,当时,取得最大值,最大值为90,
    因为,
    所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;
    (3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元),

    设该产品捐款当月的月销售利润为万元,
    由题意得:,
    整理得:,

    在内,随的增大而增大,
    则当时,取得最大值,最大值为,
    因此有,
    解得.
    【点睛】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键.
    16.(1);(2)22米;(3)不会
    【分析】(1)求雕塑高,直接令,代入求解可得;
    (2)可先求出的距离,再根据对称性求的长;
    (3)利用,计算出的函数值,再与的长进行比较可得结论.
    【详解】解:(1)由题意得,A点在图象上.
    当时,

    (2)由题意得,D点在图象上.
    令,得.
    解得:(不合题意,舍去).
    (3)当时,,

    ∴不会碰到水柱.
    【点睛】本题考查了二次函数的图像与性质及图像关于轴对称问题,解题的关键是:掌握二次函数的图像与性质.

    相关试卷

    中考数学二轮复习专题10二次函数含解析答案:

    这是一份中考数学二轮复习专题10二次函数含解析答案,共35页。试卷主要包含了已知抛物线,下列结论错误的是,点A,一元二次方程根的情况是等内容,欢迎下载使用。

    中考数学二轮复习核心考点专题10二次函数与平行四边形含矩形菱形正方形的存在性问题含解析答案:

    这是一份中考数学二轮复习核心考点专题10二次函数与平行四边形含矩形菱形正方形的存在性问题含解析答案,共39页。试卷主要包含了已知二次函数,如图等内容,欢迎下载使用。

    中考数学二轮复习核心考点专题7二次函数的实际应用含解析答案:

    这是一份中考数学二轮复习核心考点专题7二次函数的实际应用含解析答案,共16页。试卷主要包含了卡塔尔世界杯鏖战正酣等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map