所属成套资源:2023-2024学年七年级数学上学期专题复习(苏科版)
- 专题2.10一元一次方程的解法大题专练(培优强化30题)-2023-2024学年七年级数学上学期专题复习(苏科版) 试卷 0 次下载
- 专题2.11一元一次方程的新定义问题大题专练(培优强化30题)-2023-2024学年七年级数学上学期专题复习(苏科版) 试卷 0 次下载
- 专题2.13第4章一元一次方程单元测试(培优强化卷)-2023-2024学年七年级数学上学期专题复习(苏科版) 试卷 1 次下载
- 专题2.14线段的有关综合计算大题专练(培优强化30题)-2023-2024学年七年级数学上学期专题复习(苏科版) 试卷 0 次下载
- 专题2.15角的有关综合计算大题专练(培优强化30题)-2023-2024学年七年级数学上学期专题复习(苏科版) 试卷 0 次下载
专题2.12一元一次方程的应用大题专练(培优强化30题)-2023-2024学年七年级数学上学期专题复习(苏科版)
展开
这是一份专题2.12一元一次方程的应用大题专练(培优强化30题)-2023-2024学年七年级数学上学期专题复习(苏科版),文件包含专题212一元一次方程的应用大题专练培优强化30题-2023-2024学年七年级数学上学期专题复习苏科版原卷版docx、专题212一元一次方程的应用大题专练培优强化30题题-2023-2024学年七年级数学上学期专题复习苏科版解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
一、解答题
1.(2022·江苏·七年级单元测试)某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?
2.(2022·江苏南通·七年级期末)某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,设有x名工人生产螺母,剩下的工人生产螺钉.
(1)每天可生产螺母 个、螺钉 个;(用含x的代数式表示)
(2)若1个螺钉需要配2个螺母,为使每天生产的螺钉与螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?
3.(2022·江苏省锡山高级中学实验学校模拟预测)某工厂接受了15天内生产1200台GH型电子产品的总任务. 已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置. 请问至少需要补充多少名新工人?
4.(2022·江苏扬州·七年级期末)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.
(1)求该车间当前参加生产的工人有多少人;
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.
5.(2022·江苏扬州·二模)为迎接科技活动节,甲、乙两个社团承接制作彩旗的任务.已知甲社团比乙社团每小时少制作12面彩旗,甲社团制作120面彩旗所用的时间与乙社团制作150面彩旗所用的时间相等.
(1)甲、乙两个社团每小时各制作多少面彩旗?
(2)现在需要制作一批彩旗,已知甲社团单独完成比乙社团单独完成多用1个小时,那么甲、乙两个社团同时合作,______________小时可完成.(直接写答案)
6.(2022·江苏·七年级单元测试)某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.
(1)两个人合作需要多少天完成?
(2)现由徒弟先做1天,师徒两人再合作完成这项工作,问:徒弟共做了几天?
7.(2020·江苏·滨海县第一初级中学七年级阶段练习)某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独需要做这项工程需要15天完成.
(1)甲的工作效率是__________,乙的工作效率是__________.
(2)如果两队同时施工2天,然后由乙队单独施工,还需几天完成?
8.(2022·江苏·七年级专题练习)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
9.(2021·江苏苏州·七年级阶段练习)超市先后两次共进货板栗1000kg,进货价依次为10元/kg和8元/kg,第二次比第一次多付款800元.(利润=销售总收入﹣进货总成本)
(1)该超市这两次购进的板栗分别是多少kg?
(2)超市对这1000kg板栗以14元/kg的标价销售了700kg后,把剩下的板栗全部打折售出,合计获得利润不少于4570元,问超市对剩下的板栗至多打几折销售?
10.(2022·江苏南京·七年级期末)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买x个纸杯蛋糕,请你根据题意把表格补充完整,并列方程解答.
11.(2022·江苏·七年级单元测试)进入五月份,樱桃开始上市,某水果商从批发市场用12000元购进了大樱桃和小樱桃各300千克,大樱桃的进价比小樱桃的进价每千克多20元.
(1)求大樱桃和小樱桃的进价分别是每千克多少元?
(2)若大樱桃售价为每千克40元,要想樱桃全部销完后,该水果商获得的利润为3600元,则小樱桃的售价应为每千克多少元?
12.(2021·江苏·东海县驼峰中学七年级阶段练习)某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.
(1)该水果店两次分别购进了多少千克的橙子?
(2)售卖中,第一批橙子在其进价的基础上加价a%进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a的值.
13.(2022·江苏·连云港市新海初级中学七年级期末)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
(进价、售价均保持不变,利润=销售收入−进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在2的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
14.(2023·江苏·七年级专题练习)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下:
(1)降价前每件衬衫的利润率为多少?
(2)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?
15.(2022·江苏泰州·七年级期末)某超市第一次以4450元购进甲、乙两种商品,其中乙商品的件数是甲商品件数的2倍多15件,甲、乙两种商品的进价和售价如下表:(注:利润=售价-进价)
(1)该超市第一次购进甲、乙两种商品各多少件?
(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中乙商品的件数不变,甲商品的件数是第一次的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样,求第二次甲商品是按原价打几折销售?
16.(2022·江苏泰州·七年级期末)某服装连锁品牌线下门店对某一服装进行降价销售,______________,求出该服装的进价.
(从下面3个信息中选择一个,补充完整题目,并完成解答:①按进价提高50%标价,再以8折出售,获利28元;②标价210元,以8折出售,售价比进价高20%;③标价210元,让利42元销售,利润率为20%)
解:你的选择是______________(填序号)
17.(2022·江苏南京·七年级期末)某单位计划“双12期间”购进一批手写板,网上某店铺的标价为900元/台,优惠活动如下:
(1)①若该单位购买了16台这种手写板,花了 元;
②若该单位购买了x(x>20)这种手写板,花了 元;(用含x的代数式表示)
(2)若该单位购买的这种手写板均价为696元,求他们购买的数量.
18.(2022·江苏·七年级期中)春节将至,安州区两大商场均推出优惠活动:
①商场一:全场购物每满100元返30元现金(不足100元不返);
②商场二:所有的商品均按8折销售.
某同学在两家商场发现:他看中的运动服的单价相同,书包的单价也相同,这两件商品的单价之和为470元,且运动服的单价是书包的单价的8倍少25元.
(1)根据以上信息,求运动服和书包的单价.
(2)该同学要购买这两件商品,请你帮他设计出最佳的购买方案,并求出他所要付的费用.
19.(2022·江苏·泰州中学附属初中七年级期中)“双11”天猫商城推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在两家天猫店铺中选择一家购买原价均为1000元/条的被子若干条,店铺在活动期间分别给予以下优惠:
A店铺:“双11”当天购买可以享受8折优惠;
B店铺:商品每满1000元可使用店铺优惠券80元. 同时每满500元可使用商城双11购物津贴券50元,同时“双11”当天购买还可立减100元.(例如:购买2条被子需支付
1000×2−80×2−50×4−100=1540元).
(1)若张阿姨想在“双11”当天购买4条被子,她选择哪家店铺购买?请说明理由;
(2)若张阿姨在“双11”当天购买a条被子,请分别用含a的代数式表示在这两家店铺购买的费用;
(3)张阿姨在双11当天购买几条被子,两家店铺的费用相同?
20.(2023·江苏·七年级专题练习)甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:
在甲商场累计购买100元后,超出100元的部分按90%收费;
在乙商场累计购买超过50元后,超过50元的部分按95%收费.
设累计购物x元.
(1)若x=80,顾客到______商场购物花费少.(填“甲”或“乙”)
(2)当x>100时.
①顾客到甲商场购物,花费______元,到乙商场购物,花费______元.(用含x的式子表示)
②顾客到哪家商场购物花费少?
21.(2022·江苏·七年级专题练习)某次篮球联赛部分积分如下:
据表格提供的信息解答下列问题:
(1)胜一场、负一场各积多少分?
(2)某队的胜场总积分能等于负场总积分吗?若能,试求出胜场数和负场数;若不能,请说明理由.
22.(2021·江苏南京·七年级期末)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3−0或者3−1取胜的球队积3分,负队积0分;而在比赛中以3−2取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示.
(1)中国队11场胜场中只有一场以3−2取胜,请将中国队的总积分填在表格中,
(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.
23.(2022·江苏江苏·七年级期中)如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足a+9+(b−5)2=0.
(1)a = ;b = ;
(2)动点P,Q分别从点A,点B同时出发,沿着数轴向右匀速运动,点P的速度为每秒3个单位长度,点Q的速度为每秒1个单位长度.
①几秒时,点P与点Q距离2个单位长度?
②动点P,Q分别从点A,点B出发的同时,动点R也从原点O出发,沿着数轴向右匀速运动,速度为每秒nn>3个单位长度.记点P与点R之间的距离为PR,点A与点Q之间的距离为AQ,点O与点R之间的距离为OR.设运动时间为t秒,请问:是否存在n的值,使得在运动过程中,7PR−4OR3+AQ的值是定值?若存在,请求出此n值和这个定值;若不存在,请说明理由.
24.(2022·江苏·泰州市民兴中英文学校七年级期中)阅读理解:M、N、P为数轴上三点,若点P到M的距离是点P到N的距离的kk>0倍,即满足PM=k⋅PN时,则称点P关于M、N的“相对关系值”为k.例如,当点M、N、P表示的数分别为0、2、3时,PM=3PN,则称点P关于M、N的“相对关系值”为3;PN=12MN,则称点N关于P、M的“相对关系值”为12.如图,点A、B、C、D在数轴上,它们所表示的数分别为-1、2、6、-6.
(1)原点O关于A、B的“相对关系值”为a,原点O关于B、A的“相对关系值”为b,则a=______;b=______.
(2)点E为数轴上一动点,点E所表示的数为x,若x满足x+3+x−2=5,且点E关于C、D的“相对关系值”为k,则k的取值范围是______;
(3)点F从点B出发,以每秒1个单位的速度向左运动,设运动时间为tt>0秒,当经过t秒时,C、D、F三点中恰有一个点关于另外两点的“相对关系值”为2,求t的值.
25.(2022·江苏·锡中匡村实验学校七年级期中)已知数轴上A,B两点表示的有理数分别为a,b,且(a−1)2+b+2=0.
(1)求a,b的值;
(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;
(3)小蜗牛甲以1个单位长/秒的速度从点B出发向其左边6个单位长度外的食物爬去,3秒后位于点A的小蜗牛乙收到它的信号,以2个单位长度/秒的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?
26.(2022·江苏·七年级专题练习)某粮库原有大米132吨,一周内该粮库大米的进出情况如表:(运进大米记作“+”,运出大米记作“﹣”).
(1)若经过这一周,该粮库存有大米88吨,求m的值,并说明星期五该粮库是运进还是运出大米,运进或运出大米多少吨?
(2)若大米进出库的装卸费用为每吨25元,求这一周该粮库需要支付的装卸总费用.
27.(2022·江苏盐城·七年级期末)《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺;如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?
【分析】(方法一)设绳长x尺,两次测量井深不变,可列方程_____________
(方法二)设井深x尺,两次测量绳长不变,可列方程_____________
请你从上述两种方法中任选一种继续解决问题.
28.(2022·江苏·七年级专题练习)某市收取水费按以下规定:若每月每户不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分按每立方米2元收费,那么
(1)如果某户居民在某月用水x立方米,且x≤20,则所交水费为 ;
(2)如果某户居民在某月用水x立方米,且x>20,则所交水费为 元;
(3)如果某户居民在某月所交水费的平均水价为每立方米1.5元,设这户居民这个月共用了x立方米的水,请写出x的范围,并列出方程.
29.(2022·江苏扬州·七年级期末)为了加强公民的节水意识,合理利用水资源.某市采用阶梯价格调控手段达到节水目的,价目表如图.
(1)若某户居民1月份用水8 m3,则水费 元;
(2)若某户居民某月用水x m3,则用含x的代数式表示水费;
(3)若某户居民3、4月份共用水15 m3,(4月份用水量超过3月份),共交水费44元,则该户居民3、4月份各用水多少立方米?
30.(2021·江苏·常州实验初中七年级期中)为鼓励人们节约用水,某市居民生活用水实行“阶梯水价”收费,具体体收费标准见下表:
例:某用户1月份用水25吨,应缴水费1.6×20+2.4×(25﹣20)=44(元).
(1)若张红家5月份用水量为10吨,则该月需缴交水费 元;
(2)若张红家6月份缴交水费62.6元,则该月用水量为 吨;
(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)
单价
数量
总价
今天
12
x
明天
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
甲
乙
进价(元/件)
20
30
售价(元/件)
25
40
销售量
单价
不超过10台的部分
每台立减140元
超过10台但不超过20台的部分
每台立减220元
超过20台的部分
每台立减300元
队名
比赛场次
胜场
负场
积分
A
14
10
4
34
B
14
7
7
28
C
14
4
10
22
名次
球队
场次
胜场
负场
总积分
1
中国
11
11
0
________
2
美国
11
10
1
28
3
俄罗斯
11
8
3
23
4
巴西
11
21
某粮库大米一周进出情况表(单位:吨)
星期一
星期二
星期三
星期四
星期五
星期六
星期日
﹣32
+26
﹣23
﹣16
m
+42
﹣21
每户每月用水量
水的价格(单位:元/吨)
不超过20吨的部分
1.6
超过20吨且不超过30吨的部分
2.4
超过30吨的部分
3.3
相关试卷
这是一份专题2.15角的有关综合计算大题专练(培优强化30题)-2023-2024学年七年级数学上学期高效复习秘籍(苏科版),文件包含专题215角的有关综合计算大题专练培优强化30题-七年级数学上学期复习备考高分秘籍苏科版原卷版docx、专题215角的有关综合计算大题专练培优强化30题-七年级数学上学期复习备考高分秘籍苏科版解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
这是一份专题2.14线段的有关综合计算大题专练(培优强化30题)-2023-2024学年七年级数学上学期高效复习秘籍(苏科版),文件包含专题214线段的有关综合计算大题专练培优强化30题-七年级数学上学期复习备考高分秘籍苏科版原卷版docx、专题214线段的有关综合计算大题专练培优强化30题-七年级数学上学期复习备考高分秘籍苏科版解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
这是一份专题2.12一元一次方程的应用大题专练(培优强化30题)-2023-2024学年七年级数学上学期高效复习秘籍(苏科版),文件包含专题212一元一次方程的应用大题专练培优强化30题-七年级数学上学期复习备考高分秘籍苏科版原卷版docx、专题212一元一次方程的应用大题专练培优强化30题题-七年级数学上学期复习备考高分秘籍苏科版解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。