搜索
    上传资料 赚现金
    英语朗读宝

    2019年广西桂林市中考数学试卷-(解析版)

    2019年广西桂林市中考数学试卷-(解析版)第1页
    2019年广西桂林市中考数学试卷-(解析版)第2页
    2019年广西桂林市中考数学试卷-(解析版)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019年广西桂林市中考数学试卷-(解析版)

    展开

    这是一份2019年广西桂林市中考数学试卷-(解析版),共17页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
    1.的倒数是( )
    A.B.﹣C.﹣D.
    2.若海平面以上1045米,记做+1045米,则海平面以下155米,记做( )
    A.﹣1200米B.﹣155米C.155米D.1200米
    3.将数47300000用科学记数法表示为( )
    A.473×105B.47.3×106C.4.73×107D.4.73×105
    4.下列图形中,是中心对称图形的是( )
    A.圆B.等边三角形
    C.直角三角形D.正五边形
    5.9的平方根是( )
    A.3B.±3C.﹣3D.9
    6.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )
    A.B.C.D.
    7.下列命题中,是真命题的是( )
    A.两直线平行,内错角相等
    B.两个锐角的和是钝角
    C.直角三角形都相似
    D.正六边形的内角和为360°
    8.下列计算正确的是( )
    A.a2•a3=a6B.a8÷a2=a4
    C.a2+a2=2a2D.(a+3)2=a2+9
    9.如果a>b,c<0,那么下列不等式成立的是( )
    A.a+c>bB.a+c>b﹣c
    C.ac﹣1>bc﹣1D.a(c﹣1)<b(c﹣1)
    10.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为( )
    A.πB.2πC.3πD.(+1)π
    11.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为( )
    A.B.C.D.
    12.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为( )
    A.y=x+B.y=x+C.y=x+1D.y=x+
    二、填空题(共6小题.每小题3分,共18分)
    13.计算:|﹣2019|= .
    14.某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:
    这组数据的众数是 .
    15.一元二次方程(x﹣3)(x﹣2)=0的根是 .
    16.若x2+ax+4=(x﹣2)2,则a= .
    17.如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为 .
    18.如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为 .
    三.解答题(本大题共8题,共66分)
    19.(6分)计算:(﹣1)2019﹣+tan60°+(π﹣3.14)0.
    20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.
    (1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;
    (2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3);
    (3)在(2)的条件下,直接写出点A1的坐标.
    21.(8分)先化简,再求值:(﹣)÷﹣,其中x=2+,y=2.
    22.(8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A合唱,B群舞,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:
    (1)本次调查的学生总人数是多少?扇形统计图中“D”部分的圆心角度数是多少?
    (2)请将条形统计图补充完整;
    (3)若全校共有1800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?
    23.(8分)如图,AB=AD,BC=DC,点E在AC上.
    (1)求证:AC平分∠BAD;
    (2)求证:BE=DE.
    24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.
    (1)求购买一个A类足球和一个B类足球各需多少元?
    (2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?
    25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.
    (1)求证:△ACB是等腰直角三角形;
    (2)求证:OA2=OE•DC:
    (3)求tan∠ACD的值.
    26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(l,0),与y轴交于点C.
    (1)求抛物线的表达式;
    (2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;
    (3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD上的一个动点,且点P的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l左侧部分的面积为S,求S关于t的函数表达式.
    2019年广西桂林市中考数学试卷
    参考答案与试题解析
    一、选择题(共12小题,每小题3分,共36分)
    1.【解答】解:的倒数是:.
    故选:A.
    2.【解答】解:若海平面以上1045米,记做+1045米,则海平面以下155米,记做﹣155米.
    故选:B.
    3.【解答】解:将47300000用科学记数法表示为4.73×107,
    故选:C.
    4.【解答】解:A、是中心对称图形,本选项正确;
    B、不是中心对称图形,本选项错误;
    C、不是中心对称图形,本选项错误;
    D、不是中心对称图形,本选项错误.
    故选:A.
    5.【解答】解:∵(±3)2=9,
    ∴9的平方根为:±3.
    故选:B.
    6.【解答】解:当转盘停止转动时,指针指向阴影部分的概率是,
    故选:D.
    7.【解答】解:A、两直线平行,内错角相等,正确,是真命题;
    B、两个锐角的和不一定是钝角,故错误,是假命题;
    C、所有的直角三角形不一定相似,故错误,是假命题;
    D、正六边形的内角和为720°,故错误,是假命题;
    故选:A.
    8.【解答】解:A、a2•a3=a5,故此选项错误;
    B、a8÷a2=a6,故此选项错误;
    C、a2+a2=2a2,正确;
    D、(a+3)2=a2+6a+9,故此选项错误;
    故选:C.
    9.【解答】解:∵c<0,
    ∴c﹣1<﹣1,
    ∵a>b,
    ∴a(c﹣1)<b(c﹣1),
    故选:D.
    10.【解答】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.
    ∴正三角形的边长==2.
    ∴圆锥的底面圆半径是1,母线长是2,
    ∴底面周长为2π
    ∴侧面积为2π×2=2π,∵底面积为πr2=π,
    ∴全面积是3π.
    故选:C.
    11.【解答】解:由折叠可得,AE=OE=DE,CG=OG=DG,
    ∴E,G分别为AD,CD的中点,
    设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,
    ∵∠C=90°,
    ∴Rt△BCG中,CG2+BC2=BG2,
    即a2+(2b)2=(3a)2,
    ∴b2=2a2,
    即b=a,
    ∴,
    ∴的值为,
    故选:B.
    12.【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),
    ∴AC=7,DO=3,
    ∴四边形ABCD分成面积=AC×(|yB|+3)==14,
    可求CD的直线解析式为y=﹣x+3,
    设过B的直线l为y=kx+b,
    将点B代入解析式得y=kx+2k﹣1,
    ∴直线CD与该直线的交点为(,),
    直线y=kx+2k﹣1与x轴的交点为(,0),
    ∴7=×(3﹣)×(+1),
    ∴k=或k=0,
    ∴k=,
    ∴直线解析式为y=x+;
    故选:D.
    二、填空题(共6小题.每小题3分,共18分)
    13.【解答】解:|﹣2019|=2019,
    故答案为:2019.
    14.【解答】解:90出现了4次,出现的次数最多,则众数是90;
    故答案为:90
    15.【解答】解:x﹣3=0或x﹣2=0,
    所以x1=3,x2=2.
    故答案为x1=3,x2=2.
    16.【解答】解:∵x2+ax+4=(x﹣2)2,
    ∴a=﹣4.
    故答案为:﹣4.
    17.【解答】解:∵AB=AC=,BC=4,点A(3,5).
    ∴B(1,),C(5,),
    将△ABC向下平移m个单位长度,
    ∴A(3,5﹣m),C(5,﹣m),
    ∵A,C两点同时落在反比例函数图象上,
    ∴3(5﹣m)=5(﹣m),
    ∴m=;
    故答案为;
    18.【解答】解:如图,连接BA1,取BC使得中点O,连接OQ,BD.
    ∵四边形ABCD是矩形,
    ∴∠BAD=90°,
    ∴tan∠ABD==,
    ∴∠ABD=60°,
    ∵A1Q=QC,BO=OC,
    ∴OQ=BA1=AB=,
    ∴点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,
    ∴点Q的运动路径长==π.
    故答案为π.
    三.解答题(本大题共8题,共66分)
    19.【解答】解:原式=﹣1﹣2++1
    =﹣.
    20.【解答】解:(1)如图,△A1B1C1为所作;
    (2)如图,
    (3)点A1的坐标为(2,6).
    21.【解答】解:原式=•+
    =+
    =,
    当x=2+,y=2时,
    原式=.
    22.【解答】解:(1)本次调查的学生总人数是120÷60%=200(人),
    扇形统计图中“D”部分的圆心角度数是360°×=14.4°;
    (2)C项目人数为200﹣(120+52+8)=20(人),
    补全图形如下:
    (3)估计该校报名参加书法和演讲比赛的学生共有1800×=252(人).
    23.【解答】解:(1)在△ABC与△ADC中,
    ∴△ABC≌△ADC(SSS)
    ∴∠BAC=∠DAC
    即AC平分∠BAD;
    (2)由(1)∠BAE=∠DAE
    在△BAE与△DAE中,得
    ∴△BAE≌△DAE(SAS)
    ∴BE=DE
    24.【解答】解:(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,
    依题意,得:,
    解得:.
    答:购买一个A类足球需要90元,购买一个B类足球需要120元.
    (2)设购买m个A类足球,则购买(50﹣m)个B类足球,
    依题意,得:90m+120(50﹣m)≤4800,
    解得:m≥40.
    答:本次至少可以购买40个A类足球.
    25.【解答】证明:(1)∵BM是以AB为直径的⊙O的切线,
    ∴∠ABM=90°,
    ∵BC平分∠ABM,
    ∴∠ABC=∠ABM=45°
    ∵AB是直径
    ∴∠ACB=90°,
    ∴∠CAB=∠CBA=45°
    ∴AC=BC
    ∴△ACB是等腰直角三角形;
    (2)如图,连接OD,OC
    ∵DE=EO,DO=CO
    ∴∠EDO=∠EOD,∠EDO=∠OCD
    ∴∠EDO=∠EDO,∠EOD=∠OCD
    ∴△EDO∽△ODC

    ∴OD2=DE•DC
    ∴OA2=DE•DC=EO•DC
    (2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,
    ∵DO=BO
    ∴∠ODB=∠OBD,
    ∴∠AOD=2∠ODB=∠EDO,
    ∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,
    ∴∠ODB=15°=∠OBD
    ∵∠BAF=∠DBA=15°
    ∴AF=BF,∠AFD=30°
    ∵AB是直径
    ∴∠ADB=90°
    ∴AF=2AD,DF=AD
    ∴BD=DF+BF=AD+2AD
    ∴tan∠ACD=tan∠ABD===2﹣
    26.【解答】解:(1)抛物线与x轴交于点A(﹣2,0)和B(l,0)
    ∴交点式为y=﹣(x+2)(x﹣1)=﹣(x2+x﹣2)
    ∴抛物线的表示式为y=﹣x2﹣x+2
    (2)在射线AD上存在一点H,使△CHB的周长最小.
    如图1,延长CA到C',使AC'=AC,连接BC',BC'与AD交点即为满足条件的点H
    ∵x=0时,y=﹣x2﹣x+2=2
    ∴C(0,2)
    ∴OA=OC=2
    ∴∠CAO=45°,直线AC解析式为y=x+2
    ∵射线AC绕点A顺时针旋转90°得射线AD
    ∴∠CAD=90°
    ∴∠OAD=∠CAD﹣∠CAO=45°
    ∴直线AD解析式为y=﹣x﹣2
    ∵AC'=AC,AD⊥CC'
    ∴C'(﹣4,﹣2),AD垂直平分CC'
    ∴CH=C'H
    ∴当C'、H、B在同一直线上时,C△CHB=CH+BH+BC=C'H+BH+BC=BC'+BC最小
    设直线BC'解析式为y=kx+a
    ∴ 解得:
    ∴直线BC':y=x﹣
    ∵ 解得:
    ∴点H坐标为(﹣,﹣)
    (3)∵y=﹣x2﹣x+2=﹣(x+)2+
    ∴抛物线顶点Q(﹣,)
    ①当﹣2<t≤﹣时,如图2,直线l与线段AQ相交于点F
    设直线AQ解析式为y=mx+n
    ∴ 解得:
    ∴直线AQ:y=x+3
    ∵点P横坐标为t,PF⊥x轴于点E
    ∴F(t,t+3)
    ∴AE=t﹣(﹣2)=t+2,FE=t+3
    ∴S=S△AEF=AE•EF=(t+2)(t+3)=t2+3t+3
    ②当﹣<t≤0时,如图3,直线l与线段QC相交于点G,过点Q作QM⊥x轴于M
    ∴AM=﹣﹣(﹣2)=,QM=
    ∴S△AQM=AM•QM=
    设直线CQ解析式为y=qx+2
    把点Q代入:﹣q+2=,解得:q=﹣
    ∴直线CQ:y=﹣x+2
    ∴G(t,﹣t+2)
    ∴EM=t﹣(﹣)=t+,GE=﹣t+2
    ∴S梯形MEGQ=(QM+GE)•ME=(﹣t+2)(t+)=﹣t2+2t+
    ∴S=S△AQM+S梯形MEGQ=+(﹣t2+2t+)=﹣t2+2t+
    ③当0<t<1时,如图4,直线l与线段BC相交于点N
    设直线BC解析式为y=rx+2
    把点B代入:r+2=0,解得:r=﹣2
    ∴直线BC:y=﹣2x+2
    ∴N(t,﹣2t+2)
    ∴BE=1﹣t,NE=﹣2t+2
    ∴S△BEN=BE•NE=(1﹣t)(﹣2t+2)=t2﹣2t+1
    ∵S梯形MOCQ=(QM+CO)•OM=×(+2)×=,S△BOC=BO•CO=×1×2=1
    ∴S=S△AQM+S梯形MOCQ+S△BOC﹣S△BEN=++1﹣(t2﹣2t+1)=t2﹣2t+
    综上所述,S=
    组别








    得分
    90
    95
    90
    88
    90
    92
    85
    90

    相关试卷

    2022年广西桂林市中考数学试卷:

    这是一份2022年广西桂林市中考数学试卷,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年广西桂林市中考数学试卷:

    这是一份2022年广西桂林市中考数学试卷,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年广西桂林市中考数学试卷(解析版):

    这是一份2022年广西桂林市中考数学试卷(解析版),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map