2020年泸州市中考数学试卷-含答案
展开
这是一份2020年泸州市中考数学试卷-含答案,共15页。
2020年泸州市中考数学试卷
一、选择题(本大题共12个小题,每小题3分,共36分.)
1.2的倒数是( )
A. 2 B. C. D. -2
2.将867000用科学记数法表示为( )
A. B. C. D.
3.如下图所示的几何体的主视图是( )
A. B. C. D.
4.在平面直角坐标系中,将点向右平移4个单位长度,得到的对应点的坐标为( )
A. B. C. D.
5.下列正多边形中,不是中心对称图形的是( )
A. B. C. D.
6.下列各式运算正确的是( )
A. B. C. D.
7.如图,中,,.则的度数为( )
A. 100° B. 90° C. 80° D. 70°
8.某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:
那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )
A. 1.2和1.5 B. 1.2和4 C. 1.25和1.5 D. 1.25和4
9.下列命题是假命题的是( )
A. 平行四边形的对角线互相平分 B. 矩形的对角线互相垂直
C. 菱形对角线互相垂直平分 D. 正方形的对角线互相垂直平分且相等
10.已知关于x的分式方程的解为非负数,则正整数m的所有个数为( )
A. 3 B. 4 C. 5 D. 6
11.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段分为两线段,,使得其中较长的一段是全长与较短的段的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段的“黄金分割”点.如图,在中,已知,,若D,E是边的两个“黄金分割”点,则的面积为( )
A. B. C. D.
12.已知二次函数(其中x是自变量)图象经过不同两点,,且该二次函数的图象与x轴有公共点,则的值( )
A. B. 2 C. 3 D. 4
二、填空题(本大题共4个小题,每小题3分,共12分)
13.函数中,自变量的取值范围是_____.
14.若与是同类项,则a值是___________.
15.已知是一元二次方程的两个实数根,则的值是_________.
16.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为_________.
三、本大题共3个小题,每小题6分,共18分.
17.计算:.
18 如图,AB平分∠CAD,AC=AD.求证:BC=BD.
19.化简:.
四、本大题共2个小题,每小题7分,共14分.
20.某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油所行使的路程作为样本,并绘制了以下不完整的频数分布直方图和扇形统计图.
根据题中已有信息,解答下列问题:
(1)求n的值,并补全频数分布直方图;
(2)若该汽车公司有600辆该型号汽车,试估计耗油所行使的路程低于的该型号汽车的辆数;
(3)从被抽取的耗油所行使路程在,这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.
21.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.
(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?
(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?
五、本大题共2个小题,每小题8分,共16分.
22.如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A,B两点.且点A的坐标为.
(1)求该一次函数的解析式;
(2)求的面积.
23.如图,为了测量某条河的对岸边C,D两点间的距离,在河的岸边与平行的直线上取两点A,B,测得,,量得长为70米.求C,D两点间的距离(参考数据:,,).
六、本大题共2个小题,每小题12分,共24分.
24.如图,是的直径,点D在上,的延长线与过点B的切线交于点C,E为线段上的点,过点E的弦于点H.
(1)求证:;
(2)已知,,且,求的长.
25.如图,已知抛物线经过,,三点.
(1)求该抛物线的解析式;
(2)经过点B直线交y轴于点D,交线段于点E,若.
①求直线的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
2020年泸州市中考数学试卷答案
1. B .2. C.3. B.4. C.5. B.6. D.7. C.8. A.9. B.10. B.11. A.
12. C.
13. .14. 5.15. 2.16. .
17.解:原式=5-1++3
=5-1+1+3
=8
18.证明:∵AB平分∠CAD,
∴∠BAC=∠BAD.
∵AC=AD, AB=AB,
∴△ABC≌△ABD(SAS).
∴BC=BD.
19.解:原式=
=
=
20.解:(1)n=12÷30%=40(辆),
B:40-2-16-12-2=8,
补全频数分布直方图如下:
(2)=150(辆),
答:耗油所行使的路程低于的该型号汽车的有150辆;
(3)从被抽取的耗油所行使路程在的有2辆,记为A,B,行使路程在的有2辆,记为1,2,任意抽取2辆的可能结果有6种,分别为:
(A,1),(A,2),(A,B),(B,1),(B,2),(1,2)
其中抽取的2辆汽车来自同一范围的的结果有2种,
所以抽取的2辆汽车来自同一范围的的概率P==.
21.解:(1)设甲购买了x件,乙购买了y件,
,解得,
答:甲购买了20件,乙购买了10件;
(2)设购买甲奖品为a件.则乙奖品为(30-a)件,根据题意可得:
30-a≤3a,
解得a≥,
又∵甲种奖品每件30元,乙种奖品每件20元,
总花费=30a+20(30-a)=10a+600,总花费随a的增大而增大
∴当a=8时,总花费最少,
答:购买甲奖品8件,乙奖品22件,总费用最少.
22.解:∵点A在反比例函数上,
∴,解得a=2,
∴A点坐标,
∵点A在一次函数上,
∴,解得b=3,
∴该一次函数的解析式为;
(2)设直线与x轴交于点C,
令,解得x=- 2,
∴一次函数与x轴的交点坐标C(- 2,0),
∵,
解得或,
∴B(- 4,-3),
∴S△AOB=S△AOC+S△BOC,
=
=
=
=9
23.解:过点C作CH⊥AB,垂足为点H,过点D作DG⊥AB,垂足为点G,
在△ACH中,tan∠A=,得AH=CH,
同理可得BH=CH,
∵AH+BH=AB,
∴CH+CH=70.解得CH=30,
在△BCH中,tan∠ABC=,
即,解得BH=40,
又∵DG=CH=30,
同理可得BG=10,
∴CD=GH=BH+BG=40+10(米),
答:C、D两点之间的距离约等于40+10米.
24.解:(1)∵OA=OD,
∴∠ODA=∠OAD,
∵BC和AB相切,
∴∠ABC=90°,
∵DG为圆O直径,
∴∠DAG=90°,
∵∠C=180°-∠CAB-∠ABC,∠AGD=180°-∠DAG-∠ADO,
∴∠C=∠AGD;
(2)连接BD,
∵AB为直径,
∴∠ADB=∠CDB=90°,
∵,,
∴BD=,
∵OA=OB=OD=OG,∠AOG=∠BOD,
∴△BOD≌AOG(SAS),
∴AG=BD=,
∵FG⊥AB,BC⊥AB,
∴FG∥BC,
∴∠AEG=∠C,
∵∠EAG=∠CDB=90°,AG=BD,
∴△AEG≌△DCB(AAS),
∴EG=BC=6,AE=CD=4,
∵AH⊥FG,AB为直径,
∴AH=AE×AG÷EG=,FH=GH,
∴FH=GH==,
∴FG=2HG=,
∴EF=FG-EG=-6=.
25.解:(1)∵抛物线经过点,,,代入,
∴,解得:,
∴抛物线表达式为:;
(2)①过点E作EG⊥x轴,垂足为G,
∵B(4,0),
设直线BD的表达式为:y=k(x-4),
设AC表达式为:y=mx+n,将A和C代入,
得:,解得:,
∴直线AC的表达式为:y=2x+4,
联立:,
解得:,
∴E(,),
∴G(,0),
∴BG=,
∵EG⊥x轴,
∴△BDO∽△BEG,
∴,
∵,
∴,
∴,
解得:k=,
∴直线BD的表达式为:;
②由题意:设P(s,),1<s<4,
∵△PQR是以点Q为直角顶点的等腰直角三角形,
∴∠PQR=90°,PQ=RQ,
当点R在y轴右侧时,如图,
分别过点P,R作l的垂线,垂足为M和N,
∵∠PQR=90°,
∴∠PQM+∠RQN=90°,
∵∠MPQ+∠PQM=90°,
∴∠RQN=∠MPQ,又PQ=RQ,∠PMQ=∠RNQ=90°,
∴△PMQ≌△QNR,
∴MQ=NR,PM=QN,
∵Q在抛物线对称轴l上,纵坐标为1,
∴Q(1,1),
∴QN=PM=1,MQ=RN,
则点P的横坐标为2,代入抛物线得:y=4,
∴P(2,4);
当点R在y轴左侧时,
如图,分别过点P,R作l的垂线,垂足为M和N,
同理:△PMQ≌△QNR,
∴NR=QM,NQ=PM,
设R(t,),
∴RN==QM,
NQ=1-t=PM,
∴P(,2-t),代入抛物线,
解得:t=或(舍),
∴点P的坐标为(,),
综上:点P的坐标为(2,4)或(,).
相关试卷
这是一份2022年四川省泸州市中考数学试卷含答案,共29页。试卷主要包含了选择题,填空题.等内容,欢迎下载使用。
这是一份2020年泸州市中考数学试卷-及答案,共7页。
这是一份2023年四川省泸州市中考数学试卷(含答案解析),共20页。试卷主要包含了 下列各数中,最大的是, 下列运算正确的是等内容,欢迎下载使用。