精品解析:湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中高三下学期5月“一起考”数学试题
展开5月长郡、一中、雅礼、师大附中“一起考”
数学
本试卷共5页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔在答题卡的相应位置填涂考生号.
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.
4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若集合,则满足的集合的个数为( )
A. B. C. D.
2. 若(为虚数单位),则复数的模为( )
A 1 B. C. D. 2
3. 若向量,满足,,则向量在向量上的投影向量为( )
A. B. C. D.
4. 要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性.动植物死亡后,停止了新陈代谢,不再产生,且原来的会自动衰变.经过5730年,它的残余量只有原始量的一半.现用放射性碳法测得某古物中含量占原来的,推算该古物约是年前的遗物(参考数据:),则实数的值为( )
A. 12302 B. 13304 C. 23004 D. 24034
5. 若数列中,,,且,记数列前n项积为,则的值为( )
A. 1 B. C. D.
6. 已知抛物线,焦点为F,点M是抛物线C上的动点,过点F作直线的垂线,垂足为P,则的最小值为( )
A. B. C. D. 3
7. 若当时,关于x的不等式恒成立,则满足条件的a的最小整数为( )
A. 1 B. 2 C. 3 D. 4
8. 已知底面边长为a的正四棱柱内接于半径为的球内,E,F分别为,的中点,G,H分别为线段,EF上的动点,M为线段的中点,当正四棱柱的体积最大时,的最小值为( )
A. B. C. 2 D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9. 如图,在平面直角坐标系中,以原点O为圆心的圆与x轴正半轴交于点.已知点在圆O上,点T的坐标是,则下列说法中正确的是( )
A. 若,则 B. 若,则
C. ,则 D. 若,则
10. 已知函数,函数的图象在点和点处的两条切线互相垂直,且分别交y轴于M,N两点,若,则( )
A. B. 的取值范围是
C. 直线AM与BN的交点的横坐标恒为1 D. 的取值范围是
11. “”表示不大于x的最大整数,例如:,,.下列关于的性质的叙述中,正确的是( )
A.
B. 若,则
C. 若数列中,,,则
D. 被3除余数0
12. 在四棱锥中,底面ABCD是矩形,,,平面平面ABCD,点M在线段PC上运动(不含端点),则( )
A. 存在点M使得
B. 四棱锥外接球的表面积为
C. 直线PC与直线AD所成角为
D. 当动点M到直线BD的距离最小时,过点A,D,M作截面交PB于点N,则四棱锥的体积是
三、填空题:本题共4小题,每小题5分,共20分.
13. 已知,则________.
14. 第31届世界大学生夏季运动会将在今年7月28日至8月8日在四川省成都市举行.有编号为1,2,3,4,5的五位裁判,分别就座于编号为1,2,3,4,5的五个座位上,每个座位恰好坐一位裁判,则恰有两位裁判编号和座位编号一致的坐法种数为________.
15. 设函数,的定义域均为,且函数,均为偶函数.若当时,,则的值为________.
16. 已知椭圆的左、右焦点分别为,为椭圆上的动点.当的外接圆和内切圆的半径之积的最大值取到时,的最大值为,则________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17. 记的内角A,B,C的对边分别为a,b,c,已知.
(1)求A的值;
(2)若是锐角三角形,求的取值范围.
18. 某学校有、两家餐厅,王同学第天午餐时随机选择一家餐厅用餐.如果第天去餐厅,那么第天去餐厅的概率为;如果第天去餐厅,那么第天去餐厅的概率为.
(1)①求王同学第天去餐厅用餐的概率;
②如果王同学第天去餐厅用餐,求他第天在餐厅用餐的概率;
(2)餐厅对就餐环境、菜品种类与品质等方面进行了改造与提升改造提升后,餐厅对就餐满意程度进行了调查,统计了名学生的数据,如下表(单位:人).
就餐满意程度
餐厅改造提升情况
合计
改造提升前
改造提升后
满意
28
57
85
不满意
12
3
15
合计
40
60
100
依据小概率值独立性检验,能否认为学生对于餐厅的满意程度与餐厅的改造提升有关联?
附:,其中.
01
0.05
0.01
0.005
2.706
3.841
6.635
7.879
19. 如图,在三棱锥中,,,为点在平面上的射影,为的中点.
(1)证明:∥平面;
(2)若,,,求二面角的正弦值.
20. 已知数列满足,且
(1)设,求数列的通项公式;
(2)设数列的前n项和为,求使得不等式成立的n的最小值.
21. 已知双曲线的左、右焦点分别为,,且,是C上一点.
(1)求C的方程;
(2)不垂直于坐标轴的直线l交C于M, N两点,交x轴于点A,线段MN的垂直平分线交x轴于点D,若,证明:直线l过四个定点中的一个.
22. 已知函数.
(1)若,,求证:有且仅有一个零点;
(2)若对任意,恒成立,求实数a的取值范围.
精品解析:湖南省长沙市长郡中学高三一模数学试题: 这是一份精品解析:湖南省长沙市长郡中学高三一模数学试题,文件包含精品解析湖南省长沙市长郡中学高三一模数学试题解析版docx、精品解析湖南省长沙市长郡中学高三一模数学试题原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
精品解析:湖南省长沙市雅礼中学高三下学期二模数学试题: 这是一份精品解析:湖南省长沙市雅礼中学高三下学期二模数学试题,文件包含精品解析湖南省长沙市雅礼中学高三下学期二模数学试题解析版docx、精品解析湖南省长沙市雅礼中学高三下学期二模数学试题原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
2023届湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中高三下学期5月“一起考”数学试题 PDF版: 这是一份2023届湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中高三下学期5月“一起考”数学试题 PDF版,共12页。