所属成套资源:冲刺2023年高考数学真题重组卷(新高考地区专用)
重组卷02-冲刺2023年高考数学真题重组卷(新高考地区专用)
展开
这是一份重组卷02-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷02-冲刺2023年高考数学真题重组卷解析版docx、重组卷02-冲刺2023年高考数学真题重组卷参考答案docx、重组卷02-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
绝密★启用前冲刺2023年高考数学真题重组卷02新高考地区专用 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2022年高考全国甲卷数学(理))设全集,集合,则( )A. B. C. D.2.(2022年高考全国甲卷数学(文)真题)若.则( )A. B. C. D.3.(2022年新高考全国II卷数学真题)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则( )A.0.75 B.0.8 C.0.85 D.0.94.(2022年高考全国乙卷数学(理)真题)已知向量满足,则( )A. B. C.1 D.25.(2022年高考全国乙卷数学(理)真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )A.p与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大6.(2021年浙江省高考数学试题)已知是互不相同的锐角,则在三个值中,大于的个数的最大值是( )A.0 B.1 C.2 D.37.(2022年高考全国乙卷数学(文)真题)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )A. B. C. D.8.(2021年浙江省高考数学试题)已知,函数.若成等比数列,则平面上点的轨迹是( )A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021年全国新高考I卷数学试题)已知点在圆上,点、,则( )A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时, 10.(2022年新高考全国II卷数学真题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )A. B.C. D. 11.(2022年新高考全国I卷数学真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )A.C的准线为 B.直线AB与C相切C. D. 12.(2020年海南省高考数学试卷(新高考全国Ⅱ卷))信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着的增大而增大C.若,则H(X)随着n的增大而增大D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y) 三、填空题:本题共4小题,每小题5分,共20分.13.(2022年新高考全国I卷数学真题)的展开式中的系数为________________(用数字作答). 14.(2022年新高考天津数学高考真题)若直线与圆相交所得的弦长为,则_____. 15.(2020年山东省春季高考数学真题)已知抛物线的顶点在坐标原点,焦点与双曲线的左焦点重合,若两曲线相交于,两点,且线段的中点是点,则该双曲线的离心率等于______. 16.(2022年高考全国乙卷数学(理)真题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(2022年新高考全国II卷数学真题)已知为等差数列,是公比为2的等比数列,且.(1)证明:;(2)求集合中元素个数. 18.(2021年全国新高考II卷数学试题)在中,角、、所对的边长分别为、、,,..(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形?若存在,求出的值;若不存在,说明理由. 19.(2022年新高考浙江数学高考真题)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点.(1)证明:;(2)求直线与平面所成角的正弦值. 20.(2022年新高考全国I卷数学真题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好良好病例组4060对照组1090 (1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:;(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.附,0.0500.0100.001k3.8416.63510.828 21.(2022年新高考北京数学高考真题)已知函数.(1)求曲线在点处的切线方程;(2)设,讨论函数在上的单调性;(3)证明:对任意的,有. 22.(2022年新高考全国II卷数学真题)已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.
相关试卷
这是一份重组卷03-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷03-冲刺2023年高考数学真题重组卷解析版docx、重组卷03-冲刺2023年高考数学真题重组卷参考答案docx、重组卷03-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
这是一份重组卷04-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷04-冲刺2023年高考数学真题重组卷解析版docx、重组卷04-冲刺2023年高考数学真题重组卷参考答案docx、重组卷04-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份重组卷01-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷01-冲刺2023年高考数学真题重组卷解析版docx、重组卷01-冲刺2023年高考数学真题重组卷参考答案docx、重组卷01-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。