2023届江西省泰和中学一模理数试题(含答案)
展开
这是一份2023届江西省泰和中学一模理数试题(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023届高三年级一模考试数学(理)试题一、选择题(本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。)1.,,( ).A.{1,2} B.{3,4,5}C.{1,2,3,4,5,6,7} D.{6,7}2.若复数满足(是虚数单位),则( )A. B. C. D.3.总体由编号为01,02,…,29,30的30个个体组成,现从中抽取一个容量为6的样本,请从随机数表第1行第5列开始,向右读取,则选出来的第5个个体的编号为( )70 29 17 12 13 40 33 12 38 26 13 89 51 0356 62 18 37 35 96 83 50 87 75 97 12 55 93A.03 B.12 C.13 D.264.如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )A. B. C. D.5.抛物线y=4x2的焦点到准线的距离是( )A. B. C. D.26.设为三角形三边长,,若,则三角形的形状为( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定7.在中,分别是角的对边,且,,的面积为,则的周长为( )A. B. C. D.8.函数向右平移个单位后得到函数,若在上单调递增,则的取值范围是A. B. C. D.9.球的球面上有四点、、、,其中、、、四点共面,是边长为2的正三角形,平面平面,则棱锥的体积的最大值为( )A.1 B. C. D.10.设随机变量ξ服从正态分布N(1,),P(ξ>2)=0.3,则P(0<ξ<1)=( )A.0.7 B.0.4 C.0.2 D.0.1511.已知椭圆,为的左、右焦点,为上一点,且的内心为,若的面积为,则的值为( )A. B.3 C. D.612.对任意实数,记,若,其中奇函数在时有极小值,是正比例函数,与图象如图,则下列关于的说法中正确的是A.是奇函数B.有极大值和极小值C.的最小值为,最大值为2D.在上是增函数二、填空题(本大题共4个小题,每小题5分,共20分。)13.已知的三个顶点为,则边上的高所在直线的方程为__________.14.已知函数,若,是从集合中任取两个不同的数,则使函数有极值点的概率为_________.15.设a为常数记函数且,的反函数为,则___________.16.已知正方体的棱长为2,点M,N分别是棱BC,C1D1的中点,点P在平面内,点Q在线段A1N上,若,则PQ长度的最小值为____. 三、解答题:解答应写出文字说明,证明过程或演算步骤,第17 - 21题为必考题,每个考生都必须作答,第22、23题为选考题,考生根据要求作答。17.已知数列是递增的等比数列,是其前n项和,,.(1)求数列的通项公式;(2)设,求数列的前n项和.18.如图,在四棱锥中,,,,平面,M为的中点. (1)证明:平面;(2)求直线与平面所成角的余弦值. 19.某中学为调查该校学生每周参加社会实践活动的情况,随机收集了若干名学生每周参加社会实践活动的时间(单位:小时),将样本数据绘制如图所示的频率分布直方图,且在,内的学生有1人.(1)求样本容量,并根据频率分布直方图估计该校学生每周参加社会实践活动时间的平均值;(2)将每周参加社会实践活动时间在[4,12]内定义为“经常参加社会实践”,参加活动时间在[0,4)内定义为“不经常参加社会实践”.已知样本中所有学生都参加了青少年科技创新大赛,有13人成绩等级为“优秀”,其余成绩为“一般”,其中成绩优秀的13人种“经常参加社会实践活动”的有12人.请将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.05的前提下认为青少年科技创新大赛成绩“优秀”与经常参加社会实践活动有关;(3)在(2)的条件下,如果从样本中“不经常参加社会实践”的学生中随机选取两人参加学校的科技创新班,求其中恰好一人成绩优秀的概率.参考公式:. 0.100.050.0100.0050.0012.7063.8416.6357.87910.82820.已知抛物线与椭圆有公共的焦点,的左、右焦点分别为,,该椭圆的离心率为.(1)求椭圆的方程;(2)如图,若直线与轴,椭圆顺次交于,,(点在椭圆左顶点的左侧),若与互补,试问直线是否经过一个定点?若直线经过一个定点,试求此定点坐标;若不经过,请说明理由.21.已知函数.(1)当时,求在上的最小值;(2)若直线是函数的切线方程,求实数的值;(3)若,证明:对任意实数,恒成立.请从下面所给的 22、23 两题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.【选修4-4:坐标系与参数方程】已知曲线的参数方程为,在极坐标系中曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)若曲线与曲线交于两点,求. 23.【选修4-5: 不等式选讲】已知函数.(1)解不等式;(2)若对任意实数都成立,求的最大值.
1.B【分析】根据交集的定义求交集即可.【详解】A={1,2,3,4,5},B={3,4,5,6,7},则A∩B={3,4,5}.故选:B.2.B【解析】利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.3.A【分析】根据随机数表法的规则进行求解即可.【详解】根据随机数表法的规则,依次得到的数为:17、12 、13 、26、03,第5个个体的编号为03,故选:A4.A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;设,当时,,所以,故排除C;设,则,故排除D.故选:A. 5.A【分析】先把抛物线的方程化为标准方程,得到参数后即为所求.【详解】由题意得,抛物线方程的标准形式为,所以,,所以焦点到准线的距离是.故选A.【点睛】解答本题的关键是将抛物线的方程化为标准形式,其中参数的几何意义就是焦点到准线的距离,考查对抛物线方程和对方程中参数意义的理解.6.B【详解】试题分析:两边除以得,,故为直角三角形.考点:1.解三角形;2.对数运算.7.D【分析】由同角三角函数关系可求得,利用三角形面积公式得到,利用余弦定理构造方程可求得,由此可得所求周长.【详解】,,,,,解得:;在中,由余弦定理得:,解得:,的周长为.故选:D.8.D【分析】首先求函数,再求函数的单调递增区间,区间是函数单调递增区间的子集,建立不等关系求的取值范围.【详解】,令 解得 , 若在上单调递增, ,解得: 时,.故选D.【点睛】本题考查了三角函数的性质和平移变换,属于中档题型.9.B【解析】由于面面,所以点在平面上的射影落在上,根据球体的对称性可知,当在“最高点”,也就是说为中点时,最大,三棱锥的体积最大,计算出的长以及的面积,利用锥体的体积公式可求得结果.【详解】如下图所示:由于面面,所以点在平面上的射影落在上,根据球体的对称性可知,当在“最高点”,也就是说为中点时,最大,是边长为的等边三角形,所以,球的半径为,在中,,,所以三棱锥的体积为.故选:B【点睛】易错点晴:球与几何体的外接和内切问题一直是高中数学的重要题型,也是高考和各级各类考试的难点内容.本题将三棱锥与外接球整合在一起考查三棱锥的体积的最大值无疑是加大了试题的难度.解答本题时要充分利用题设中提供的有关信息,先确定球心的位置是的外心,再求外接球的半径,并确定当为三棱锥的高时,该三棱锥的体积最大.10.C【分析】根据随机变量ξ服从正态分布,得出正态曲线的对称轴,由P(ξ>2)=0.3,利用依据正态分布对称性,即可求得答案.【详解】由题意,随机变量ξ服从正态分布N(1,),∴正态曲线的对称轴是:x=1,又∵P(ξ>2)=0.3,∴P(ξ≤0)=0.3,∴P(0<ξ<1)=[1-(0.3+0.3)]=0.2,故选C.【点睛】本小题主要考查正态分布曲线的特点及曲线所表示的意义、正态分布曲线的对称性的应用等基础知识,着重考查运算求解能力,及数形结合思想,属于基础题.11.D【分析】利用焦点三角形的面积公式,建立等量关系,结合椭圆的性质,计算椭圆的离心率,再结合焦点三角形的面积公式即可求的值.【详解】由题意得,的内心到轴的距离等于内切圆的半径,即为的纵坐标,即为,因为为上的一点,所以,即,又因为,所以,,整理得,解得(舍)或,所以,所以,所以,即,解得.故选:D.12.B【详解】因为,是奇函数,其图象关于原点对称,所以与图象如图1所示; 根据,可知,的图象如图2所示,显然,的图象不关于原点对称,不是奇函数;无最小值、无最大值;其在区间 “先增后减”,故选B. 考点:新定义函数,函数的奇偶性,函数的图象,函数的单调性与极(最)值.13.【分析】由两点斜率公式求得,根据垂直直线的斜率关系求边上的高所在直线的斜率,再由直线的点斜式求边上的高所在直线的方程.【详解】因为,所以,设边上的高所在直线的斜率为,则,所以,故边上的高所在直线的斜率为,所以边上的高所在直线的方程为,即.故答案为:.14.【详解】试题分析:因为,所以;若函数有极值点,则有两个不等实根,所以,即;从集合中任取两个不同的数,共有个实数对,其中满足的有共4个实数对;由古典概型的概率公式,得使函数有极值点的概率为;故填.考点:1.导数与函数的极值;2.古典概型.【易错点睛】本题以古典概型为载体考查函数的极值,属于中档题;在处理函数的极值问题时,要注意“可导函数是函数在处有极值的充分条件,不是充要条件”,如:本题中,若函数有极值点,则有两个不等实根,而不是“有实根”.15.【分析】先求出反函数,然后求出,所以等于a个a相加.【详解】由 ,得,,,原式,故答案为【点睛】本题考查了反函数的求法,考查了函数值的计算,属于基础题.16.1【分析】取的中点,连接,得到,求得,得到点在以为圆心,1为半径的半圆上,在平面图形中,求得,结合,即可求解.【详解】如图所示,取的中点,连接,则平面,所以,因为,正方体的棱长为2,是的中点,所以,所以点在以为圆心,1为半径的位于平面内的半圆上,单独画出平面及相关点、线,如图所示,所以点到的距离减去半径就是长度的最小值,连接,作交于,则,所以,解得所以长度的最小值为.故答案为:.17.(1);(2). 【分析】(1)根据给定条件求出数列的公比即可计算得解.(2)由(1)的结论求出,然后利用分组求和方法求解作答.(1)设等比数列的公比为q,而,且是递增数列,则,,解得,所以数列的通项公式是:.(2)由(1)知,,,,所以数列的前n项和.18.(1)证明见解析(2) 【分析】(1)通过证明平面来证得平面.(2)建立空间直角坐标系,利用向量法计算出直线与平面所成角的正弦值,并转化为余弦值.(1)连接,由题意知底面为直角梯形,因为M为中点,所以,故四边形为正方形,所以,又因为平面,所以,由于,故平面,而,所以,所以平面.(2)如图建立空间直角坐标系,则,,设平面的法向量为,则有,不妨令,则,即,则,故直线与平面所成角的余弦值为.19.(1),5.8小时;(2)见解析;(3) 【分析】(1)先根据条件求得样本容量,然后再根据频率分布直方图中平均数的求法求解;(2)结合题意完成列联表,并求出,与临界值表对照后可得结论;(3)根据题意得不经常参加社会实践活动的有人,其中成绩优秀的有1人,然后根据古典概型概率的求法求解.【详解】(1)解:由题意得活动时间在的频率为,又参加社会实践活动的时间在内的有人, 所以样本容量. 根据频率分布直方图,该校学生每周参加社会实践活动时间的平均值为: (小时).(2)解:由题意得“不经常参加社会实践”的学生有人,所以列联表如下: 一般优秀合计不经常参加415经常参加31215合计71320 由表中数据可得. 所以在犯错误的概率不超过的前提下可以认为“青少年科技创新大赛成绩优秀与经常参加社会实践活动有关系”.(3)解:由(2)知不经常参加社会实践活动的有人,其中成绩优秀的有1人.设成绩优秀的编号为;成绩一般的学生有人,编号依次为.所有参加培训的情况有: ,共10种. 恰好一人成绩优秀的情况有,共4种. 所以由古典概型计算公式得所求概率为.20.(1)(2)直线经过定点 【分析】(1)由已知条件推导出,结合和隐含条件,即可求出椭圆标准方程.(2)设,,,,直线为,由与互补,可得,根据已知条件,结合韦达定理,求出的值,从而可得出结论.(1)解:由题意可得,抛物线的焦点为,椭圆的半焦距,又椭圆的离心率为,,即,,,即,椭圆的方程为;(2)解:,设,,,, 与互补,,,化简整理,可得①,设直线为,联立直线与椭圆方程,化简整理,可得,,可得②,由韦达定理,可得③,将,代入①,可得④,再将③代入④,可得,解得,的方程为, 所以直线经过定点.21.(1)0(2)(3)见解析【分析】(1)求出函数的到函数,可得的单调性,从而得出其最小值.(2) 设切点为,由直线是函数的切线方程,则,即,又,即,即得,即求出函数的零点即可.(3) 因为,所以当时,,所以当时,,设,可得恒成立,且,则时,,即,即,同理可得,从而可证.【详解】解:(1)由于,则,从而在单调递增,从而.(2),由题可知,设切点为,则由,整理得.当时,不可能;当时,得①.又,即②.由①②可得,. 令,则,注意到.令,则,注意到.令,则恒成立.可得时,,时,,所以恒成立,所以在上单调递增,可知是方程的唯一解.所以切点为,. (3)因为,所以当时,③,所以当时,④,令,则.当时,;当时,,所以恒成立,且.设,则.此时,即,结合③,得,即,得到,成立,即,结合④,得,即,得到,所以,成立,所以成立,得证.【点睛】本题考查利用导数求函数的最小值,根据切线求参数和利用导数证明不等式,属于难题.22.(1),;(2)【分析】⑴运用消参法求出曲线的普通方程和直角坐标方程⑵运用弦长公式求出结果【详解】(1)曲线的参数方程为,消去参数,得,故曲线的普通方程为.因为,即.所以曲线的直角坐标方程为,即. (2)由,消去,可得,即.所以,,所以.【点睛】本题考查了曲线普通方程和直角坐标方程之间的转化,只需运用公式代入化简即可,在求长度时运用弦长公式即可算出答案,较为基础.23.(1)(2) 【分析】(1)利用零点分段讨论法去掉绝对值,求解绝对值不等式;(2)由绝对值三角不等式,则恒成立,利用基本不等式求的最大值.【详解】(1),不等式等价于: 或或 ,解得或.所以不等式解集为:.(2)恒成立,即,由,则,即,当且仅当时等号成立.所以的最大值为.
相关试卷
这是一份江西省吉安市泰和县2023届高三数学(理)第一次模考试题(Word版附解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024届江西省泰和中学高三7月暑期质量检测数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2024江西省泰和中学高三暑期质量检测试题数学PDF版含答案,文件包含江西省泰和中学2024届高三暑期质量检测数学答案pdf、江西省泰和中学2024届高三暑期质量检测数学pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。